当前位置: 首页 > news >正文

【abc417】E - A Path in A Dictionary

Problem Statement

You are given a simple connected undirected graph G with N vertices and M edges.
The vertices of G are numbered vertex 1, vertex 2, …, vertex N, and the i-th (1≤i≤M) edge connects vertices Ui​ and Vi​.

Find the lexicographically smallest simple path from vertex X to vertex Y in G.
That is, find the lexicographically smallest among the integer sequences P=(P1​,P2​,…,P∣P∣​) that satisfy the following conditions:

  • 1≤Pi​≤N

  • If i\neqj, then Pi​\neqPj​.

  • P1​=X and P_{|P|}=Y

  • For 1≤i≤∣P∣−1, there exists an edge connecting vertices Pi​ and Pi+1​.

One can prove that such a path always exists under the constraints of this problem.

You are given T test cases, so find the answer for each.

Lexicographic order on integer sequencesAn integer sequence S=(S1​,S2​,…,S∣S∣​) is lexicographically smaller than an integer sequence T=(T1​,T2​,…,T∣T∣​) if either of the following 1. or 2. holds. Here, ∣S∣ and ∣T∣ represent the lengths of S and T, respectively.

  1. ∣S∣<∣T∣ and (S1​,S2​,…,S∣S∣​)=(T1​,T2​,…,T∣S∣​).

  2. There exists some 1≤i≤min(∣S∣,∣T∣) such that (S1​,S2​,…,Si−1​)=(T1​,T2​,…,Ti−1​) and Si​<Ti​.

Constraints

  • 1≤T≤500

  • 2≤N≤1000

  • N−1≤M≤min(2N(N−1)​,5×104)

  • 1≤X,Y≤N

  • X\neqY

  • 1≤Ui​<Vi​≤N

  • If i\neqj, then (Ui​,Vi​)\neq(Uj​,Vj​).

  • The given graph is connected.

  • The sum of N over all test cases in each input is at most 1000.

  • The sum of M over all test cases in each input is at most 5×104.

  • All input values are integers.


Input

The input is given from Standard Input in the following format:

T
case1​
case2​

caseT​

casei​ represents the i-th test case. Each test case is given in the following format:

N M X Y
U1​ V1​
U2​ V2​

UM​ VM​

Output

Output T lines.
The i-th line (1≤i≤T) should contain the vertex numbers on the simple path that is the answer to the i-th test case, in order, separated by spaces.
That is, when the answer to the i-th test case is P=(P1​,P2​,…,P∣P∣​), output P1​, P2​, …, P∣P∣​ on the i-th line in this order, separated by spaces.


Sample Input 1

2
6 10 3 5
1 2
1 3
1 5
1 6
2 4
2 5
2 6
3 4
3 5
5 6
3 2 3 2
1 3
2 3

Sample Output 1

3 1 2 5
3 2

For the first test case, graph G is as follows:

The simple paths from vertex 3 to vertex 5 on G, listed in lexicographic order, are as follows:

  • (3,1,2,5)
  • (3,1,2,6,5)
  • (3,1,5)
  • (3,1,6,2,5)
  • (3,1,6,5)
  • (3,4,2,1,5)
  • (3,4,2,1,6,5)
  • (3,4,2,5)
  • (3,4,2,6,1,5)
  • (3,4,2,6,5)
  • (3,5)

Among these, the lexicographically smallest is (3,1,2,5), so output 3,1,2,5 separated by spaces on the first line.

For the second test case, (3,2) is the only simple path from vertex 3 to vertex 2.

题目大意:找到从x到y的最小字典序通路

用邻接图存储,排序,dfs搜索,回溯,注意回溯的时候,不用把状态再改回false,因为我们在dfs到该点时,已经发现它是构不成连通的,所以下次就不需要再到达这个节点了,这样可以减少很大一部分运算,从而将TLE的代码变成AC

AC代码:

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
const ll N=200010;
int n,m,x,y;
vector<int>path;
bool found;	
void dfs(int current,vector<vector<int>>&graph,vector<bool>&visit){path.push_back(current);visit[current]=true;if (current==y){found=true;for (int i:path)  cout<<i<<" ";cout<<"\n";return ;	}sort(graph[current].begin(),graph[current].end());for (auto i:graph[current]){if (!visit[i]&&!found){visit[i]=true;dfs(i,graph,visit);if (found)return ;path.pop_back();}}
}
void solve(){cin>>n>>m>>x>>y;vector<vector<int>>graph(n+1);for (int i=1;i<=m;i++){int u,v;cin>>u>>v;graph[u].push_back(v);graph[v].push_back(u);}path.clear();vector<bool>visit(n+1,false);found=false;dfs(x,graph,visit);
}
int main() {ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);int T;cin>>T;while(T--){solve();}
}

http://www.lryc.cn/news/608675.html

相关文章:

  • HTTPS的概念和工作过程
  • Kazam产生.movie.mux后恢复视频为.mp4
  • Transformer模型用于MT信号相关性预测与分析
  • 知识蒸馏 - 基于KL散度的知识蒸馏 HelloWorld 示例 采用PyTorch 内置函数F.kl_div的实现方式
  • 【C++】封装,this指针
  • 个人自用----c语言指针复习(malloc)
  • 大语言模型涉及的一些概念(持续更新)
  • 安卓加固脱壳
  • 1.8 axios详解
  • Axios介绍
  • 超声波泄露传感器
  • SpringBoot3.x入门到精通系列:2.6 整合 Redis 详解
  • Python 基础语法(一):从常量到运算符
  • jvm之jconsole的使用
  • MySQL连接算法和小表驱动大表的原理
  • 初识prometheus
  • Selenium Web 自动化
  • 【软考中级网络工程师】知识点之 RIP 协议
  • 华为智能家居与Spring人工智能
  • 决策树学习全解析:从理论到实战
  • C++手撕基于ID3算法的决策树
  • 著作权登记遇难题:创作者如何突破确权困境?
  • 自动驾驶中的传感器技术19——Camera(10)
  • ELECTRICAL靶场
  • ClickHouse Windows迁移方案与测试
  • 【动态规划算法】路径问题
  • WebRTC前处理模块技术详解:音频3A处理与视频优化实践
  • Node.js (Express) + MySQL + Redis构建项目流程
  • 决策树的实际案例
  • sqli-labs:Less-25关卡详细解析