【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博舆情数据可视化分析-热词情感趋势柱状图
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博舆情数据可视化分析-热词情感趋势柱状图
视频在线地址:
2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫) 视频教程 (火爆连载更新中..)_哔哩哔哩_bilibili
课程简介:
本课程采用主流的Python技术栈实现,Mysql8数据库,Flask后端,Pandas数据分析,前端可视化图表采用echarts,以及requests库,snowNLP进行情感分析,词频统计,包括大量的数据统计及分析技巧。
实现了,用户登录,注册,爬取微博帖子和评论信息,进行了热词统计以及舆情分析,以及基于echarts实现了数据可视化,包括微博文章分析,微博IP分析,微博评论分析,微博舆情分析。最后也基于wordcloud库实现了词云图,包括微博内容词云图,微博评论词云图,微博评论用户词云图等功能。
微博舆情数据可视化分析-热词情感趋势柱状图
首先,我把微博舆情分析静态页面sentimentAnalysis.html贴到templates下:
{% extends 'base.html' %}
{% block title %}舆情分析{% endblock %}
{% block content %}<div class="container-fluid"><div class="row"><div class="col-md-12 mb-4 mt-1"><div class="d-flex flex-wrap justify-content-between align-items-center"><h4 class="font-weight-bold">舆情分析</h4>
</div></div></div>
<div class="row"><div class="col-lg-6"><div class="card"><div class="card-header d-flex justify-content-between"><div class="header-title"><h4 class="card-title">热词情感趋势柱状图</h4></div></div><div class="card-body"><div id="hotBarMain" style="width:100%;height:450px">
</div></div></div>
</div><div class="col-lg-6"><div class="card"><div class="card-header d-flex justify-content-between"><div class="header-title"><h4 class="card-title">热词情感趋势树形图</h4></div></div><div class="card-body"><div id="hotTreeMapMain" style="width:100%;height:450px">
</div></div></div></div><div class="col-lg-6"><div class="card"><div class="card-header d-flex justify-content-between"><div class="header-title"><h4 class="card-title">文章内容与评论内容舆情趋势饼状图</h4></div></div><div class="card-body"><div id="contentPieMain" style="width:100%;height:450px;text-align:center"></div></div></div></div><div class="col-lg-6"><div class="card"><div class="card-header d-flex justify-content-between"><div class="header-title"><h4 class="card-title">热词TOP15</h4></div></div><div class="card-body"><div id="hotData15Main" style="width:100%;height:450px;text-align:center"></div></div></div></div></div></div>
{% endblock %}
{% block echarts %}
{% endblock %}
后端实现sentimentAnalysis方法:
@pb.route('/sentimentAnalysis')
def sentimentAnalysis():"""舆情数据分析:return:"""xHotBarData = ['正面', '中性', '负面']yHotBarData = [0, 0, 0]# 只读取前100条df = pd.read_csv('./fenci/comment_fre.csv', nrows=100)for value in df.values:# 情感分析stc = SnowNLP(value[0]).sentimentsif stc > 0.6:yHotBarData[0] += 1elif stc < 0.2:yHotBarData[2] += 1else:yHotBarData[1] += 1return render_template('sentimentAnalysis.html',xHotBarData=xHotBarData,yHotBarData=yHotBarData)
前端实现柱状图表代码:
<script>var chartDom = document.getElementById('hotBarMain');var myChart = echarts.init(chartDom);var option;var colors = ['#66CC99', '#FFCC66', '#FF6666', '#6699CC'];
option = {title: {text: '热词情感分析柱状图',},tooltip: {trigger: 'axis'},legend: {data: ['情感个数']},toolbox: {show: true,feature: {dataView: {show: true, readOnly: false},magicType: {show: true, type: ['line', 'bar']},restore: {show: true},saveAsImage: {show: true}}},calculable: true,xAxis: [{type: 'category',// prettier-ignoredata: {{ xHotBarData | tojson}}}],yAxis: [{type: 'value'}],series: [{name: '情感个数',type: 'bar',data: {{ yHotBarData }},markPoint: {data: [{type: 'max', name: 'Max'},{type: 'min', name: 'Min'}]},itemStyle: {color: function (params) {return colors[params.dataIndex % colors.length];}},markLine: {data: [{type: 'average', name: 'Avg'}]}}]};
option && myChart.setOption(option);
</script>