【数论】P8954 「VUSC」Math Game|普及+
本文涉及知识点
数论:质数、最大公约数、菲蜀定理
P8954 「VUSC」Math Game
题目背景
upd 2023.1.22:新增一组 Hack 数据 by @MCRS_lizi。
远在哞利坚的 Bessie 也要在新春之际走亲访友!为了打发时间,她常和 Farmer John 玩一个有趣的数字游戏。
题目描述
Farmer John 有一个集合 SSS,集合初始为 {2,3,4,...,N}\{2,3,4,...,N\}{2,3,4,...,N}。
对于两个在集合 SSS 内的正整数 p,qp,qp,q,我们称它们为「一对好数」当且仅当 pk=q(k≥2∧k∈N)p^k=q(k\ge 2\land k\in\N)pk=q(k≥2∧k∈N)。
我们将每个 SSS 中的数看成一张无向图中的节点,对于每一对「好数」,我们在这两个数间连一条无向边。
Farmer John 会进行 QQQ 次操作,操作有以下两种:
- 给出 xxx,询问结点 xxx 所在的连通块大小。
- 给出 xxx,从 SSS 中移除 xxx。与此同时,无向图中的结点 xxx 也被移除。
由于 Bessie 的速度太慢了,她想要你来帮忙。
输入格式
第 111 行 222 个正整数,N,QN,QN,Q。
接下来 QQQ 行,每行一个正整数,opi,xiop_i,x_iopi,xi。
其中,opiop_iopi 表示操作的序号。
数据保证 xix_ixi 在集合 SSS 中。
输出格式
对于操作 111,每行输出一个正整数,表示询问的答案。
输入输出样例 #1
输入 #1
30 6
1 6
1 4
2 9
1 3
2 2
1 16
输出 #1
1
4
2
2
说明/提示
【样例解释】
这是原始无向图(上面一排都是孤点):
这是进行第一次操作 222 后的无向图(删除了结点 999):
这是进行第二次操作 222 后的无向图(删除了结点 222):
【数据范围】
全部数据满足:
- 2≤N≤10182\le N \le 10^{18}2≤N≤1018
- 1≤Q≤1061\le Q \le 10^61≤Q≤106
- xi∈Sx_i\in Sxi∈S
- opi∈{1,2}op_i \in \{1,2\}opi∈{1,2}
测试点 1∼21\sim21∼2 另外满足 2≤N≤1052\le N \le 10^52≤N≤105,1≤Q≤1041\le Q \le 10^41≤Q≤104。
测试点 3∼43\sim43∼4 另外满足所有 xi=mpix_i=m^{p_i}xi=mpi,其中 mmm 为一满足 m≥2∧m∈Nm\ge 2 \land m\in \Nm≥2∧m∈N 的常数。
测试点 5∼105\sim105∼10 没有额外限制。
数论(暴力)
性质一:q≥2→p≥2q\ge2 \rightarrow p \ge2q≥2→p≥2。
性质二:删点前,任何连通区域大小不超过60。p≥2p \ge 2p≥2则p60>1018p^{60} > 10^{18}p60>1018,删点后并集查找只会变小。
性质三:删点前,某连通区域最小元素为y,则此连通区域所有元素都和y连通。用反证法证明:y↔a↔by \leftrightarrow a \leftrightarrow by↔a↔b,则y↔by \leftrightarrow by↔b,则a=yk1,b=yk2→b=yk1×k2a = y^{k1},b=y^{k2} \rightarrow b=y^{k1\times k2}a=yk1,b=yk2→b=yk1×k2
性质四: 删点后,最小元素不符合性质三。如:5删除。52,53,565^2,5^3,5^652,53,56是一个连通区域,但52和53不直接相连。
f(x)是x删点前所在连通区域的最小值。
利用唯一分解定理分解x,x=Πpini,g=gcd(n)x=\Pi p_i^{n_i},g =gcd(n)x=Πpini,g=gcd(n)。则f(x) =Πpini\Pi p_i^{n_i}Πpini
实现
用哈希集合记录所有删除的X。
预处理:v[i]记录i所有因数,包括1,不包括i。1≤i≤601 \le i \le 601≤i≤60
查询X所在连通区域大小的算法如下:
一,求f(x)。
二,求最大K,f(x)K≤Nf(x)^K \le Nf(x)K≤N
三,k = 1 to K
如果 f(x)kf(x)^kf(x)k被删除,则忽略。
j : v[k]
如果f(x)jf(x)^jf(x)j未被删除,连通(i,j)。
令 x = f(x)k1f(x)^{k1}f(x)k1
g所在连通区域的大小就是答案。
时间复杂度:O(NQ\sqrt N QNQ)
稍稍加速
如果f(x)没有被删除,直接统计未被删除的数论。这样v[i]可以不包括1。
代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>#include <bitset>
using namespace std;template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {in >> pr.first >> pr.second;return in;
}template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t);return in;
}template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);return in;
}template<class T = int>
vector<T> Read() {int n;cin >> n;vector<T> ret(n);for (int i = 0; i < n; i++) {cin >> ret[i];}return ret;
}
template<class T = int>
vector<T> ReadNotNum() {vector<T> ret;T tmp;while (cin >> tmp) {ret.emplace_back(tmp);if ('\n' == cin.get()) { break; }}return ret;
}template<class T = int>
vector<T> Read(int n) {vector<T> ret(n);for (int i = 0; i < n; i++) {cin >> ret[i];}return ret;
}template<int N = 1'000'000>
class COutBuff
{
public:COutBuff() {m_p = puffer;}template<class T>void write(T x) {int num[28], sp = 0;if (x < 0)*m_p++ = '-', x = -x;if (!x)*m_p++ = 48;while (x)num[++sp] = x % 10, x /= 10;while (sp)*m_p++ = num[sp--] + 48;AuotToFile();}void writestr(const char* sz) {strcpy(m_p, sz);m_p += strlen(sz);AuotToFile();}inline void write(char ch){*m_p++ = ch;AuotToFile();}inline void ToFile() {fwrite(puffer, 1, m_p - puffer, stdout);m_p = puffer;}~COutBuff() {ToFile();}
private:inline void AuotToFile() {if (m_p - puffer > N - 100) {ToFile();}}char puffer[N], * m_p;
};template<int N = 1'000'000>
class CInBuff
{
public:inline CInBuff() {}inline CInBuff<N>& operator>>(char& ch) {FileToBuf();ch = *S++;return *this;}inline CInBuff<N>& operator>>(int& val) {FileToBuf();int x(0), f(0);while (!isdigit(*S))f |= (*S++ == '-');while (isdigit(*S))x = (x << 1) + (x << 3) + (*S++ ^ 48);val = f ? -x : x; S++;//忽略空格换行 return *this;}inline CInBuff& operator>>(long long& val) {FileToBuf();long long x(0); int f(0);while (!isdigit(*S))f |= (*S++ == '-');while (isdigit(*S))x = (x << 1) + (x << 3) + (*S++ ^ 48);val = f ? -x : x; S++;//忽略空格换行return *this;}template<class T1, class T2>inline CInBuff& operator>>(pair<T1, T2>& val) {*this >> val.first >> val.second;return *this;}template<class T1, class T2, class T3>inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {*this >> get<0>(val) >> get<1>(val) >> get<2>(val);return *this;}template<class T1, class T2, class T3, class T4>inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);return *this;}template<class T = int>inline CInBuff& operator>>(vector<T>& val) {int n;*this >> n;val.resize(n);for (int i = 0; i < n; i++) {*this >> val[i];}return *this;}template<class T = int>vector<T> Read(int n) {vector<T> ret(n);for (int i = 0; i < n; i++) {*this >> ret[i];}return ret;}template<class T = int>vector<T> Read() {vector<T> ret;*this >> ret;return ret;}
private:inline void FileToBuf() {const int canRead = m_iWritePos - (S - buffer);if (canRead >= 100) { return; }if (m_bFinish) { return; }for (int i = 0; i < canRead; i++){buffer[i] = S[i];//memcpy出错 }m_iWritePos = canRead;buffer[m_iWritePos] = 0;S = buffer;int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);if (readCnt <= 0) { m_bFinish = true; return; }m_iWritePos += readCnt;buffer[m_iWritePos] = 0;S = buffer;}int m_iWritePos = 0; bool m_bFinish = false;char buffer[N + 10], * S = buffer;
};class CUnionFind
{
public:CUnionFind(int iSize) :m_vNodeToRegion(iSize){for (int i = 0; i < iSize; i++){m_vNodeToRegion[i] = i;}m_iConnetRegionCount = iSize;}CUnionFind(vector<vector<int>>& vNeiBo) :CUnionFind(vNeiBo.size()){for (int i = 0; i < vNeiBo.size(); i++) {for (const auto& n : vNeiBo[i]) {Union(i, n);}}}int GetConnectRegionIndex(int iNode){int& iConnectNO = m_vNodeToRegion[iNode];if (iNode == iConnectNO){return iNode;}return iConnectNO = GetConnectRegionIndex(iConnectNO);}void Union(int iNode1, int iNode2){const int iConnectNO1 = GetConnectRegionIndex(iNode1);const int iConnectNO2 = GetConnectRegionIndex(iNode2);if (iConnectNO1 == iConnectNO2){return;}m_iConnetRegionCount--;if (iConnectNO1 > iConnectNO2){m_vNodeToRegion[iConnectNO1] = iConnectNO2;}else{m_vNodeToRegion[iConnectNO2] = iConnectNO1;}}bool IsConnect(int iNode1, int iNode2){return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);}int GetConnetRegionCount()const{return m_iConnetRegionCount;}//vector<int> GetNodeCountOfRegion()//各联通区域的节点数量//{// const int iNodeSize = m_vNodeToRegion.size();// vector<int> vRet(iNodeSize);// for (int i = 0; i < iNodeSize; i++)// {// vRet[GetConnectRegionIndex(i)]++;// }// return vRet;//}std::unordered_map<int, vector<int>> GetNodeOfRegion(){std::unordered_map<int, vector<int>> ret;const int iNodeSize = m_vNodeToRegion.size();for (int i = 0; i < iNodeSize; i++){ret[GetConnectRegionIndex(i)].emplace_back(i);}return ret;}
private:vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引int m_iConnetRegionCount;
};template<class T = int>
class CUniqueFactorization
{
public:CUniqueFactorization(T iPrime, int cnt) {m_data.emplace_back(iPrime, cnt);}CUniqueFactorization(vector<T> primes = {}, vector<int> cnts = {}) {for (int i = 0; i < primes.size(); i++) {m_data.emplace_back(primes[i], cnts[i]);}}CUniqueFactorization operator+ (const CUniqueFactorization& o)const {return Add(o, true);}CUniqueFactorization Add(const CUniqueFactorization& o, bool bIgornZero = false)const {CUniqueFactorization ret;int i = 0, j = 0;while ((i < m_data.size()) && (j < o.m_data.size())) {if (m_data[i].first == o.m_data[j].first) {int cnt = m_data[i].second + o.m_data[j].second;if ((0 != cnt) || !bIgornZero){ret.m_data.emplace_back(m_data[i].first, cnt);}i++, j++;}else if (m_data[i].first < o.m_data[j].first) {ret.m_data.emplace_back(m_data[i]);i++;}else {ret.m_data.emplace_back(o.m_data[j]);j++;}}ret.m_data.insert(ret.m_data.end(), m_data.begin() + i, m_data.end());ret.m_data.insert(ret.m_data.end(), o.m_data.begin() + j, o.m_data.end());return ret;}CUniqueFactorization negation()const {CUniqueFactorization ret;ret = *this;for (auto& [i, cnt] : ret.m_data) {cnt *= -1;}return ret;}CUniqueFactorization GetValue(const CUniqueFactorization& o)const {CUniqueFactorization ret;for (const auto& [pri, cnt] : m_data) {ret.m_data.emplace_back(pri, 0);}return ret + o;};pair<T, T> Union()const {long long ll1 = 1, ll2 = 1;for (auto [pri, cnt] : m_data) {auto& ll = (cnt >= 0) ? ll1 : ll2;for (int j = 0; j < abs(cnt); j++) {ll *= pri;}//可以用快速指数幂加速}return { ll1,ll2 };}vector<pair<T, int>> m_data;
};class CCreatePrime {
public:CCreatePrime(int iMax) :m_isPrime(iMax + 1, true){m_isPrime[0] = m_isPrime[1] = false;for (int i = 2; i <= iMax; i++){if (m_isPrime[i]){m_vPrime.emplace_back(i);}for (const auto& n : m_vPrime){if ((long long)n * i > iMax) { break; }m_isPrime[n * i] = false;if (0 == i % n) { break; }}}}vector<int> m_vPrime;vector<bool> m_isPrime;
};
template<class T = int>
class CUniqueFactorizationFactory {
public:CUniqueFactorizationFactory(T iMax) :m_cc(sqrt(iMax) + 2), m_vPrime(m_cc.m_vPrime) {}CUniqueFactorization<T> Factorization(T x) {CUniqueFactorization<T> ret;for (const auto& iPre : m_vPrime) {int cnt = 0;while (0 == x % iPre) {cnt++;x /= iPre;}if (cnt > 0) {ret.m_data.emplace_back(iPre, cnt);}if (iPre * iPre > x) { break; }}if (x > 1) {ret.m_data.emplace_back(x, 1);}return ret;}const vector<int>& m_vPrime;
protected:CCreatePrime m_cc;
};class Solution {
public:vector<int> Ans(const long long N, vector<pair<int, long long>>& ope) {unordered_set<long long> sDel;vector<vector<int>> v(61, vector<int>(1, 1));for (int i = 2; i <= 60; i++) {for (int j = 2; (j < i); j++) {if (0 == i % j) { v[i].emplace_back(j); }}}CUniqueFactorizationFactory<long long> cff(1e7);auto f = [&](int x) {auto cf = cff.Factorization(x);int g = 0;for (const auto& [p, n] : cf.m_data) {g = gcd(g, n);}long long y = 1;for (const auto& [p, n] : cf.m_data) {for (int i = 1; i <= n / g; i++) {y *= p;}}return make_pair(y, g);};bool hasDel[61] = { 0 };vector<int>ans;auto Query = [&](long long x) {const auto [y, g] = f(x);auto tmp = y;int K = 1;hasDel[K] = sDel.count(tmp);for (; N / y >= tmp; ) {K++, tmp *= y;hasDel[K] = sDel.count(tmp);}CUnionFind uf(K + 1);for (int i = 2; i <= K; i++) {if (hasDel[i]) { continue; }for (const auto& j : v[i]) {if (hasDel[j]) { continue; }uf.Union(i, j);}}const int r = uf.GetConnectRegionIndex(g);ans.emplace_back(uf.GetNodeOfRegion()[r].size());};for (const auto& [kind, x] : ope) {if (1 == kind) {Query(x);}else {sDel.emplace(x);}}return ans;}
};int main() {
#ifdef _DEBUGfreopen("a.in", "r", stdin);
#endif // DEBUGios::sync_with_stdio(0); cin.tie(nullptr); cout.tie(nullptr); long long N;cin >> N;auto ope = Read<pair<int, long long>>();
#ifdef _DEBUGprintf("N=%d", N);//Out(xy, ",xy="); //Out(edge, ",edge=");Out(ope, ",ope=");
#endif // DEBUGauto res = Solution().Ans(N, ope);for (const auto& s : res) {cout << s << "\n";} return 0;
}
优化
2==g2==g2==g,直接y1=sqrt(x),判断y1和y1+1的平方是否是x。如果不相信sqrt,可以手动二分。
vk[k] 升序记录所有k次方。直接lower,看是否相等。
代码
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>#include <bitset>
using namespace std;template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {in >> pr.first >> pr.second;return in;
}template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t);return in;
}template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);return in;
}template<class T = int>
vector<T> Read() {int n;cin >> n;vector<T> ret(n);for (int i = 0; i < n; i++) {cin >> ret[i];}return ret;
}
template<class T = int>
vector<T> ReadNotNum() {vector<T> ret;T tmp;while (cin >> tmp) {ret.emplace_back(tmp);if ('\n' == cin.get()) { break; }}return ret;
}template<class T = int>
vector<T> Read(int n) {vector<T> ret(n);for (int i = 0; i < n; i++) {cin >> ret[i];}return ret;
}template<int N = 1'000'000>
class COutBuff
{
public:COutBuff() {m_p = puffer;}template<class T>void write(T x) {int num[28], sp = 0;if (x < 0)*m_p++ = '-', x = -x;if (!x)*m_p++ = 48;while (x)num[++sp] = x % 10, x /= 10;while (sp)*m_p++ = num[sp--] + 48;AuotToFile();}void writestr(const char* sz) {strcpy(m_p, sz);m_p += strlen(sz);AuotToFile();}inline void write(char ch){*m_p++ = ch;AuotToFile();}inline void ToFile() {fwrite(puffer, 1, m_p - puffer, stdout);m_p = puffer;}~COutBuff() {ToFile();}
private:inline void AuotToFile() {if (m_p - puffer > N - 100) {ToFile();}}char puffer[N], * m_p;
};template<int N = 1'000'000>
class CInBuff
{
public:inline CInBuff() {}inline CInBuff<N>& operator>>(char& ch) {FileToBuf();ch = *S++;return *this;}inline CInBuff<N>& operator>>(int& val) {FileToBuf();int x(0), f(0);while (!isdigit(*S))f |= (*S++ == '-');while (isdigit(*S))x = (x << 1) + (x << 3) + (*S++ ^ 48);val = f ? -x : x; S++;//忽略空格换行 return *this;}inline CInBuff& operator>>(long long& val) {FileToBuf();long long x(0); int f(0);while (!isdigit(*S))f |= (*S++ == '-');while (isdigit(*S))x = (x << 1) + (x << 3) + (*S++ ^ 48);val = f ? -x : x; S++;//忽略空格换行return *this;}template<class T1, class T2>inline CInBuff& operator>>(pair<T1, T2>& val) {*this >> val.first >> val.second;return *this;}template<class T1, class T2, class T3>inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {*this >> get<0>(val) >> get<1>(val) >> get<2>(val);return *this;}template<class T1, class T2, class T3, class T4>inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);return *this;}template<class T = int>inline CInBuff& operator>>(vector<T>& val) {int n;*this >> n;val.resize(n);for (int i = 0; i < n; i++) {*this >> val[i];}return *this;}template<class T = int>vector<T> Read(int n) {vector<T> ret(n);for (int i = 0; i < n; i++) {*this >> ret[i];}return ret;}template<class T = int>vector<T> Read() {vector<T> ret;*this >> ret;return ret;}
private:inline void FileToBuf() {const int canRead = m_iWritePos - (S - buffer);if (canRead >= 100) { return; }if (m_bFinish) { return; }for (int i = 0; i < canRead; i++){buffer[i] = S[i];//memcpy出错 }m_iWritePos = canRead;buffer[m_iWritePos] = 0;S = buffer;int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);if (readCnt <= 0) { m_bFinish = true; return; }m_iWritePos += readCnt;buffer[m_iWritePos] = 0;S = buffer;}int m_iWritePos = 0; bool m_bFinish = false;char buffer[N + 10], * S = buffer;
};class CUnionFind
{
public:CUnionFind(int iSize) :m_vNodeToRegion(iSize){for (int i = 0; i < iSize; i++){m_vNodeToRegion[i] = i;}m_iConnetRegionCount = iSize;}CUnionFind(vector<vector<int>>& vNeiBo) :CUnionFind(vNeiBo.size()){for (int i = 0; i < vNeiBo.size(); i++) {for (const auto& n : vNeiBo[i]) {Union(i, n);}}}int GetConnectRegionIndex(int iNode){int& iConnectNO = m_vNodeToRegion[iNode];if (iNode == iConnectNO){return iNode;}return iConnectNO = GetConnectRegionIndex(iConnectNO);}void Union(int iNode1, int iNode2){const int iConnectNO1 = GetConnectRegionIndex(iNode1);const int iConnectNO2 = GetConnectRegionIndex(iNode2);if (iConnectNO1 == iConnectNO2){return;}m_iConnetRegionCount--;if (iConnectNO1 > iConnectNO2){m_vNodeToRegion[iConnectNO1] = iConnectNO2;}else{m_vNodeToRegion[iConnectNO2] = iConnectNO1;}}bool IsConnect(int iNode1, int iNode2){return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);}int GetConnetRegionCount()const{return m_iConnetRegionCount;}//vector<int> GetNodeCountOfRegion()//各联通区域的节点数量//{// const int iNodeSize = m_vNodeToRegion.size();// vector<int> vRet(iNodeSize);// for (int i = 0; i < iNodeSize; i++)// {// vRet[GetConnectRegionIndex(i)]++;// }// return vRet;//}std::unordered_map<int, vector<int>> GetNodeOfRegion(){std::unordered_map<int, vector<int>> ret;const int iNodeSize = m_vNodeToRegion.size();for (int i = 0; i < iNodeSize; i++){ret[GetConnectRegionIndex(i)].emplace_back(i);}return ret;}
private:vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引int m_iConnetRegionCount;
};class Solution {
public:vector<int> Ans(const long long N, vector<pair<int, long long>>& ope) {unordered_set<long long> sDel;vector<vector<int>> v(61, vector<int>(1, 1));for (int i = 2; i <= 60; i++) {for (int j = 2; (j < i); j++) {if (0 == i % j) { v[i].emplace_back(j); }}}static auto vk = InitVK();auto f = [&](const long long x) {for (int g = 60; g >= 3; g--) {auto it = lower_bound(vk[g].begin(), vk[g].end(), x);if ((vk[g].end() != it) && (x == *it)) {return make_pair((long long)(it - vk[g].begin() + 2), g);}}long long y1 = sqrt(x);if (y1 * y1 == x) { return make_pair(y1, 2); }if ((y1 + 1) * (y1 + 1) == x) { return make_pair(y1 + 1, 2); }return make_pair(x, 1);};bool hasDel[61] = { 0 };vector<int>ans;auto Query = [&](long long x) {const auto [y, g] = f(x);auto tmp = y;int K = 1;hasDel[K] = sDel.count(tmp);for (; N / y >= tmp; ) {K++, tmp *= y;hasDel[K] = sDel.count(tmp);}CUnionFind uf(K + 1);for (int i = 2; i <= K; i++) {if (hasDel[i]) { continue; }for (const auto& j : v[i]) {if (hasDel[j]) { continue; }uf.Union(i, j);}}const int r = uf.GetConnectRegionIndex(g);ans.emplace_back(uf.GetNodeOfRegion()[r].size());};for (const auto& [kind, x] : ope) {if (1 == kind) {Query(x);}else {sDel.emplace(x);}}return ans;}vector<vector<long long>> InitVK() {vector<vector<long long>> vk(61);const long long llMax = 1e18;for (long long j = 2; ; j++) {const long long tmp = j * j * j;if (tmp > llMax) { break; }vk[3].emplace_back(tmp);}for (int k = 4; k <= 60; k++) {for (int i = 0; i < vk[k - 1].size(); i++) {if (llMax / (i + 2) < vk[k - 1][i]) { break; }vk[k].emplace_back(vk[k - 1][i] * (i + 2));}}return vk;}
};int main() {
#ifdef _DEBUGfreopen("a.in", "r", stdin);
#endif // DEBUGios::sync_with_stdio(0); cin.tie(nullptr); cout.tie(nullptr); long long N;cin >> N;auto ope = Read<pair<int, long long>>();
#ifdef _DEBUGprintf("N=%d", N);//Out(xy, ",xy="); //Out(edge, ",edge=");Out(ope, ",ope=");
#endif // DEBUGauto res = Solution().Ans(N, ope);for (const auto& s : res) {cout << s << "\n";} return 0;
}
单元测试
long long N;vector<pair<int, long long>> ope;TEST_METHOD(TestMethod1){N = 30, ope = { {1,6},{1,4},{2,9},{1,3},{2,2},{1,16} };auto res = Solution().Ans(N,ope);AssertV({ 1,4,2,2 }, res);}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。