基于Java对于PostgreSQL多层嵌套JSON 字段判重
场景:把复杂的
CommonCondition
条件树以 JSON 形式存入 PostgreSQL,并要求:
子条件顺序、
valueList 重复值、
展示用字段(如别名)
不影响“相同业务逻辑”的判定。
本文给出一条 Java → PostgreSQL 的端到端可复制方案。
1. 数据库层设计(PostgreSQL)
CREATE TABLE report_condition (id bigserial PRIMARY KEY,condition jsonb NOT NULL,signature char(64) NOT NULL, -- SHA-256 长度created_at timestamptz DEFAULT now()
);-- 查询时直接按 signature 去重
CREATE UNIQUE INDEX uk_signature ON report_condition(signature);
触发器可选:如果希望完全由 DB 计算签名,可用
plpython3u
调用 Python 归一化脚本;
下文演示 Java 端计算签名后写入,逻辑更清晰。
2. Java 端核心实现
2.1 枚举:白名单字段规则
package com.example.condition;import java.util.List;/** 不同业务场景下保留的字段集合 */
public enum ConditionNormalizeRule {DEFAULT(List.of("table","field","fieldType","type","logicalOperator","operator","valueList","commonConditions")),REPORT (List.of("table","field","type","operator","valueList","commonConditions")), // 去掉 fieldTypeAUDIT (List.of("table","field","fieldType","type","operator","valueList","commonConditions"));private final List<String> whiteList;ConditionNormalizeRule(List<String> whiteList) { this.whiteList = whiteList; }public List<String> getWhiteList() { return whiteList; }
}
2.2 工具类 ConditionHash
@Slf4j
public final class ConditionHashUtil {/** 全局 ObjectMapper,线程安全 */private static final ObjectMapper MAPPER = new ObjectMapper().setSerializationInclusion(JsonInclude.Include.NON_NULL) // 忽略 null.configure(SerializationFeature.ORDER_MAP_ENTRIES_BY_KEYS, true); // 键排序/*** 计算业务等价哈希* @param root 待计算的 CommonCondition 树* @param rule 决定保留哪些字段的枚举* @return SHA-256 十六进制字符串(64 位)*/public static String sha256(CommonCondition root, ConditionNormalizeRule rule) {try {JsonNode tree = normalize(MAPPER.valueToTree(root), rule);String jsonStr = MAPPER.writeValueAsString(tree);return DigestUtils.sha256Hex(jsonStr);} catch (Exception e) {throw new IllegalStateException("compute hash failed", e);}}/* ---------- 私有归一化逻辑 ---------- *//** 递归归一化:保留白名单字段 + 去重排序 */private static JsonNode normalize(JsonNode node, ConditionNormalizeRule rule) {if (node == null || node.isNull()) return node;if (!node.isObject()) return node;ObjectNode obj = MAPPER.createObjectNode();List<String> white = rule.getWhiteList();// 按照字段名排序,确保处理顺序一致List<String> sortedKeys = white.stream().filter(node::has).sorted().toList();for (String key : sortedKeys) {JsonNode val = node.get(key);switch (key) {case "valueList":obj.set(key, normalizeValueList(val)); // 去重+排序break;case "commonConditions":obj.set(key, normalizeChildren(val, rule)); // 递归+排序break;default:if (val != null && !val.isNull()) {obj.set(key, val); // 直接保留非空值}// null值不添加到结果中}}System.out.println("obj:"+obj);return obj;}/** valueList 去重+字典序排序 */private static JsonNode normalizeValueList(JsonNode listNode) {if (listNode == null || !listNode.isArray() || listNode.isEmpty()) {return MAPPER.createArrayNode();}List<String> list = MAPPER.convertValue(listNode, new TypeReference<List<String>>() {});// 过滤null值,去重并按字典序排序list = list.stream().filter(Objects::nonNull).distinct().sorted().collect(Collectors.toList());return MAPPER.valueToTree(list);}/** commonConditions 递归归一化后按字符串排序 */private static JsonNode normalizeChildren(JsonNode childrenNode, ConditionNormalizeRule rule) {if (childrenNode == null || !childrenNode.isArray() || childrenNode.isEmpty()) {return MAPPER.createArrayNode();}List<JsonNode> normalizedChildren = new ArrayList<>();for (JsonNode child : childrenNode) {if (child != null && !child.isNull()) {normalizedChildren.add(normalize(child, rule));}}// 按照标准化后的字符串表示排序List<JsonNode> sorted = normalizedChildren.stream().filter(Objects::nonNull).sorted(Comparator.comparing(node -> {try {return MAPPER.writeValueAsString(node);} catch (Exception e) {return node.toString();}})).toList();ArrayNode result = MAPPER.createArrayNode();sorted.forEach(result::add);return result;}private ConditionHashUtil() {}}
3. 使用示例
3.1 构造两个“业务等价”的对象
CommonCondition condA = CommonCondition.builder().type("logical").logicalOperator("AND").commonConditions(List.of(CommonCondition.builder().type("base").table("user").field("age").operator("GT").valueList(List.of("18", "18", "20")) // 重复值.build(),CommonCondition.builder().type("base").table("user").field("status").operator("IN").valueList(List.of("ACTIVE", "LOCKED")).build())).build();/* 把子条件顺序颠倒,再加一个别名字段,但业务含义不变 */
CommonCondition condB = CommonCondition.builder().type("logical").logicalOperator("AND").tableNameAlias("u") // 展示用,不参与哈希.commonConditions(List.of(CommonCondition.builder().type("base").table("user").field("status").operator("IN").valueList(List.of("LOCKED", "ACTIVE", "ACTIVE")) // 重复+乱序.build(),CommonCondition.builder().type("base").table("user").field("age").operator("GT").valueList(List.of("20", "18")) // 乱序.build())).build();
3.2 计算哈希并判重
String sigA = ConditionHash.sha256(condA, ConditionNormalizeRule.DEFAULT);
String sigB = ConditionHash.sha256(condB, ConditionNormalizeRule.DEFAULT);System.out.println("sigA = " + sigA);
System.out.println("sigB = " + sigB);
System.out.println("same = " + sigA.equals(sigB)); // true
3.3 插入 PostgreSQL
String sql = """INSERT INTO report_condition(condition, signature)VALUES (?::jsonb, ?)ON CONFLICT (signature) DO NOTHING""";
try (PreparedStatement ps = conn.prepareStatement(sql)) {ps.setString(1, new ObjectMapper().writeValueAsString(condA));ps.setString(2, sigA);ps.executeUpdate();
}
ON CONFLICT (signature) DO NOTHING
利用唯一索引实现幂等写入,天然判重。
4. 性能 & 扩展
子条件规模 | 耗时(MacBook M2) | 建议 |
---|---|---|
< 100 | < 1 ms | 无需优化 |
100~1 000 | 1~8 ms | 缓存哈希 |
> 1 000 | > 10 ms | 并行流 + 缓存 |
缓存示例(Lombok):
@Getter(lazy = true)
private final String hash = ConditionHash.sha256(this, ConditionNormalizeRule.DEFAULT);
5. 小结
数据库:JSONB + 唯一索引
signature
,一行 SQL 完成判重。Java:
ConditionHash.sha256(root, rule)
统一出口,顺序、重复、别名全部抹平。枚举:新增业务场景只需再加一个
ConditionNormalizeRule
值,零侵入。