当前位置: 首页 > news >正文

Matrix Theory study notes[6]

文章目录

  • linear space
  • references

linear space

  1. a basis of linear space VkV^kVk,which is x1,x2,...xkx_1,x_2,...x_kx1,x2,...xk,can be called as a coordinate system.let vector v∈Vkv \in V^kvVk and it can be linear expressed on this basis as v=a1x1+a2x2+...+akxkv=a_1x_1+a_2x_2+...+a_kx_kv=a1x1+a2x2+...+akxk,the a1,a2,....,aka_1,a_2,....,a_ka1,a2,....,ak is coordinate in this coordinate system denoted by (a1,a2,...,ak)T(a_1,a_2,...,a_k)^T(a1,a2,...,ak)T.
  2. the various coordinate systems for the same vector are different usually because of non-uniqueness of basis of a linear space. for the first basis which is x1,x2,...xkx_1,x_2,...x_kx1,x2,...xk ,the coordinate is (a1,a2,...,ak)T(a_1,a_2,...,a_k)^T(a1,a2,...,ak)T and there are the second basis x1′,x2′,...xk′x_1',x_2',...x_k'x1,x2,...xk to coorespond another coordinate (a1′,a2′,...,ak′)T(a_1',a_2',...,a_k')^T(a1,a2,...,ak)T,also can be explain that v=a1x1+a2x2+...+akxk=a1′x1′+a2′x2′+...+ak′xk′v=a_1x_1+a_2x_2+...+a_kx_k=a_1'x_1'+a_2'x_2'+...+a_k'x_k'v=a1x1+a2x2+...+akxk=a1x1+a2x2+...+akxk.
  3. let v∈Vkv \in V^kvVk and x1,x2,...xkx_1,x_2,...x_kx1,x2,...xk is a basis of linear space,then vvv can uniquely be separated into the linear combination that v=a1x1+a2x2+...+akxkv=a_1x_1+a_2x_2+...+a_kx_kv=a1x1+a2x2+...+akxk.

references

  1. deepseek
  2. 《矩阵论》
http://www.lryc.cn/news/605133.html

相关文章:

  • USRP捕获手机/路由器数据传输信号波形(上)
  • ZKMall商城开源本地部署指南
  • Apache Ignite 集群标识(Cluster ID)和集群标签(Cluster Tag)
  • 【物联网】基于树莓派的物联网开发【18】——树莓派安装Mosquitto服务
  • anaconda和Miniconda安装包32位64位皆可,anaconda和Miniconda有什么区别?
  • 2419. 按位与最大的最长子数组
  • 【 建模分析回顾】[MultiOutputClassifier]MAP - Charting Student Math Misunderstandings
  • mac升级安装python3
  • LeetCode 53 - 最大子数组和
  • 【Unity3D实例-功能-移动】复杂移动(Blend Tree方式)
  • JeecgBoot(1):前后台环境搭建
  • 【Excel】制作双重饼图
  • Linux设备驱动架构相关文章
  • 学习日志22 python
  • CUDA编程9 - 卷积实践
  • Python - 元类
  • 离散扩散模型在数独问题上的复现与应用
  • RAG工作流程总览
  • 解析非法获取计算机信息系统数据罪中的其他技术手段
  • 《超级秘密文件夹》密码遗忘?试用版/正式版找回教程(附界面操作步骤)
  • IATF 16949详解(腾讯混元)
  • Oracle11g数据库迁移达梦8数据库方案
  • 论文阅读|CVPR 2025|Mamba进一步研究|GroupMamba
  • 领域驱动设计(DDD)在分布式系统中的架构实践
  • cpp实现音频重采样8k->16k及16k->8k
  • 不同环境安装配置redis
  • 网络端口号全景解析:从基础服务到特殊应用的完整指南
  • 代码随想录算法训练营第三十六天
  • 【git】GitHub 的专用代理地址
  • day21-Excel文件解析