a basis of linear space VkV^kVk,which is x1,x2,...xkx_1,x_2,...x_kx1,x2,...xk,can be called as a coordinate system.let vector v∈Vkv \in V^kv∈Vk and it can be linear expressed on this basis as v=a1x1+a2x2+...+akxkv=a_1x_1+a_2x_2+...+a_kx_kv=a1x1+a2x2+...+akxk,the a1,a2,....,aka_1,a_2,....,a_ka1,a2,....,ak is coordinate in this coordinate system denoted by (a1,a2,...,ak)T(a_1,a_2,...,a_k)^T(a1,a2,...,ak)T.
the various coordinate systems for the same vector are different usually because of non-uniqueness of basis of a linear space. for the first basis which is x1,x2,...xkx_1,x_2,...x_kx1,x2,...xk ,the coordinate is (a1,a2,...,ak)T(a_1,a_2,...,a_k)^T(a1,a2,...,ak)T and there are the second basis x1′,x2′,...xk′x_1',x_2',...x_k'x1′,x2′,...xk′ to coorespond another coordinate (a1′,a2′,...,ak′)T(a_1',a_2',...,a_k')^T(a1′,a2′,...,ak′)T,also can be explain that v=a1x1+a2x2+...+akxk=a1′x1′+a2′x2′+...+ak′xk′v=a_1x_1+a_2x_2+...+a_kx_k=a_1'x_1'+a_2'x_2'+...+a_k'x_k'v=a1x1+a2x2+...+akxk=a1′x1′+a2′x2′+...+ak′xk′.
let v∈Vkv \in V^kv∈Vk and x1,x2,...xkx_1,x_2,...x_kx1,x2,...xk is a basis of linear space,then vvv can uniquely be separated into the linear combination that v=a1x1+a2x2+...+akxkv=a_1x_1+a_2x_2+...+a_kx_kv=a1x1+a2x2+...+akxk.