Rust实战:AI与机器学习自动炒饭机器学习
基于Rust语言的AI/机器学习相关实例
以下是基于Rust语言的AI/机器学习相关实例,涵盖基础算法、框架应用和实际场景实现。内容整合自开源项目、社区案例和工具库文档,提供可直接运行的代码片段或项目参考。
基础机器学习算法
线性回归
use linreg::linear_regression;
let x: Vec<f64> = vec![1.0, 2.0, 3.0];
let y: Vec<f64> = vec![2.0, 4.0, 5.5];
let (slope, intercept): (f64, f64) = linear_regression(&x, &y).unwrap();
K-Means聚类
use smartcore::cluster::kmeans::*;
let data = vec![vec![1.0, 2.0], vec![1.1, 2.2], vec![0.9, 1.9],vec![5.0, 5.0], vec![5.1, 5.2], vec![4.9, 4.8]
];
let model = KMeans::fit(&data, 2, Default::default()).unwrap();
深度学习框架应用
使用Tch-rs(PyTorch绑定)
use tch::{nn, Device, Tensor};
struct Net { conv1: nn::Conv2D, fc1: nn::Linear }
let vs = nn::VarStore::new(Device::Cpu);
let net = Net { conv1: nn::conv2d(&vs.root(), 1, 32, 5, Default::default()),fc1: nn::linear(&vs.root(), 1024, 10, Default::default())
};
ONNX模型推理
use tract_onnx::prelude::*;
let model = tract_onnx::onnx().model_for_path("model.onnx")?.into_optimized()?.into_runnable()?;
let input = Tensor::from(arr1(&[1.0, 2.0]));
let output = model.run(tvec!(input))?;
NLP处理实例
文本情感分析
use rust_bert::pipelines::sentiment::SentimentModel;
let model = SentimentModel::new(Default::default())?;
let input = ["Rust is amazingly productive!"];
let output = model.predict(&input);
词向量提取
use finalfusion::prelude::*;
let embeddings = Embeddings::read_embeddings("model.fifu")?;
let embedding = embeddings.embedding("人工智能");
计算机视觉
OpenCV图像分类
use opencv::{dnn, prelude::*};
let net = dnn::read_net_from_onnx("resnet18.onnx")?;
let blob = dnn::blob_from_image(&image, 1.0, Size::new(224, 224), Scalar::all(0), false, false)?;
net.set_input(&blob, "", 1.0, Scalar::all(0))?;
let output = net.forward("")?;
YOLO目标检测
use darknet::image::Image;
let det = darknet::Detector::new("yolov4.cfg", "yolov4.weights", 0)?;
let img = Image::open("test.jpg")?;
let results = det.detect(&img, 0.5, 0.5);
强化学习
Q-Learning算法
use rsrl::domains::GridWorld;
use rsrl::policies::EGreedy;
let env = GridWorld::new();
let mut agent = QLearning::new(env.state_space(), env.action_space(), 0.99, 0.1);
以下是基于 AutumnAI/leaf
库的30个实例示例,涵盖张量操作、模型训练、层构建等核心功能。所有示例均以Rust编写,需确保已添加 leaf
依赖至 Cargo.toml
:
[dependencies]
leaf = "0.2.0" # 版本可能需调整
基础张量操作
use leaf::tensor::Tensor;let tensor = Tensor::from_vec(vec![1.0, 2.0, 3.0], vec![3]);
let squared = tensor.map(|x| x * x);
let a = Tensor::from_vec(vec![1.0, 2.0], vec![2]);
let b = Tensor::from_vec(vec![3.0, 4.0], vec![2]);
let dot_product = a.dot(&b);
线性层构建
use leaf::layer::{Linear, Layer};
let linear_layer = Linear::new(10, 5); // 输入10维,输出5维
let input = Tensor::rand(vec![1, 10]);
let output = linear_layer.forward(&input);
激活函数
use leaf::layer::ReLU;
let relu = ReLU::new();
let activated = relu.forward(&Tensor::from_vec(vec![-1.0, 0.5], vec![2]));
损失函数
use leaf::loss::MSE;
let loss_fn = MSE::new();
let prediction = Tensor::from_vec(vec![0.8, 0.2], vec![2]);
let target = Tensor::from_vec(vec![1.0, 0.0], vec![2]);
let loss = loss_fn.forward(&prediction, &target);
优化器使用
use leaf::optimizer::SGD;
let mut optimizer = SGD::new(0.01); // 学习率0.01
optimizer.update(&mut linear_layer.parameters());
完整模型训练
use leaf::model::Model;
struct MyModel { layer1: Linear, layer2: Linear }
impl Model for MyModel {fn forward(&self, x: &Tensor) -> Tensor {let x = self.layer1.forward(x);self.layer2.forward(&x)}
}
let model = MyModel { layer1: Linear::new(10, 5), layer2: Linear::new(5, 1) };
数据批处理
let batch = Tensor::stack(&[Tensor::from_vec(vec![1.0, 2.0], vec![2]),Tensor::from_vec(vec![3.0, 4.0], vec![2])
], 0);
保存与加载模型
model.save("model.bin").unwrap();
let loaded = MyModel::load("model.bin").unwrap();
GPU加速(需特性支持)
#[cfg(feature = "cuda")]
let tensor_gpu = Tensor::from_vec(vec![1.0, 2.0], vec![2]).to_gpu();
自定义层实现
use leaf::layer::Layer;
struct CustomLayer;
impl Layer for CustomLayer {fn forward(&self, x: &Tensor) -> Tensor {x.map(|v| v * 0.5)}
}
梯度检查
let x = Tensor::from_vec(vec![1.0], vec![1]).requires_grad(true);
let y = &x * &x;
y.backward();
let grad = x.grad();
基于 LaurentMazare/tch-rs
以下是基于 LaurentMazare/tch-rs
(Rust 的 PyTorch 绑定库)的实用示例,涵盖张量操作、模型训练和推理等场景。每个示例均以代码片段形式呈现,并附带简要说明。
基础张量操作
创建张量
use tch::Tensor;
let tensor = Tensor::from_slice(&[1, 2, 3, 4]);
println!("{:?}", tensor);
创建一维张量并打印。
随机张量
let rand_tensor = Tensor::randn(&[2, 3], (tch::Kind::Float, tch::Device::Cpu));
生成 2x3 的随机正态分布张量。
张量运算
let a = Tensor::from_slice(&[1.0, 2.0]);
let b = Tensor::from_slice(&[3.0, 4.0]);
let sum = a + b;
逐元素加法。
自动微分与梯度
计算梯度
let x = Tensor::from(2.0).requires_grad(true);
let y = x * x;
y.backward();
let grad = x.grad();
计算 $y = x^2$ 在 $x=2$ 处的导数。
线性回归参数更新
let w = Tensor::randn(&[1], (tch::Kind::Float, tch::Device::Cpu)).requires_grad(true);
let b = Tensor::zeros(&[1], (tch::Kind::Float, tch::Device::Cpu)).requires_grad(true);
let lr = 0.01;
let loss = (y_pred - y_true).pow(2).sum();
loss.backward();
tch::no_grad(|| {w += -lr * w.grad();b += -lr * b.grad();
});
手动实现梯度下降更新。
神经网络构建
定义简单模型
use tch::nn;
struct Net {fc1: nn::Linear,fc2: nn::Linear,
}
impl Net {fn new(vs: &nn::Path) -> Net {Net {fc1: nn::linear(vs, 784, 128, Default::default()),fc2: nn::linear(vs, 128, 10, Default::default()),}}fn forward(&self, x: &Tensor) -> Tensor {x.view(&[-1, 784]).apply(&self.fc1).relu().apply(&self.fc2)}
}
构建一个两层全连接网络。
加载预训练模型