当前位置: 首页 > news >正文

RF随机森林分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角

代码功能

RF随机森林分类预测分类预测分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角
该代码实现了一个基于RF随机森林分类预测的数据分类模型,结合了SHAP可解释性分析,主要功能包括:

  1. 数据预处理与划分
  2. RF随机森林分类预测模型构建与训练
  3. 分类性能评估(准确率/混淆矩阵)
  4. 训练过程可视化
  5. 特征重要性分析(SHAP值)

算法步骤

  1. 数据准备阶段

    • 导入Excel数据集(最后一列为类别标签)
    • 分析数据维度(特征数/类别数/样本量)
    • 随机打乱数据集
    • 按类别分层划分训练集(70%)和测试集(30%)
  2. 数据预处理

    • 特征数据归一化(mapminmax)
    • 数据平铺
    • 转换为元胞数组适应网络输入
  3. RF随机森林分类预测模型构建

  4. 模型训练

  5. 性能评估

    • 计算训练/测试集准确率
    • 绘制预测结果对比曲线
    • 生成混淆矩阵
  6. SHAP可解释性分析

    • 计算测试样本的SHAP值
    • 绘制特征重要性排名
    • 生成特征依赖图

技术路线

原始数据
预处理
RF随机森林分类预测分类预测模型
训练优化
性能评估
SHAP分析
特征重要性

运行环境要求

  1. MATLAB版本:≥2020b
  2. 自定义函数依赖
    • SHAP值计算
    • SHAP可视化

应用场景

  1. 序列分类
    • 设备故障诊断
    • 医疗信号分类
  2. 特征可解释性分析
    • 识别关键影响因素
    • 模型决策过程解释
    • 高维特征重要性排序

注意:实际应用中需根据数据特性调整输入维度。SHAP分析部分计算成本较高,可通过减少numShapSamples参数控制样本量。

数据集

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

完整代码私信回复RF随机森林分类预测分类预测+特征贡献SHAP分析,通过特征贡献分析增强模型透明度,Matlab代码实现

http://www.lryc.cn/news/602294.html

相关文章:

  • 力扣7:整数反转
  • OCR 赋能合同抽取:不良资产管理公司的效率加速器
  • Kafka 顺序消费实现与优化策略
  • 数据结构之顺序表链表栈
  • 【Git】Linux-ubuntu 22.04 初步认识 -> 安装 -> 基础操作
  • 图片PDF识别工具:扫描PDF文件批量OCR区域图识别改名,识别大量PDF区域内容一次性改名
  • 基于LSTM和GRU的上海空气质量预测研究
  • 图片上传 el+node后端+数据库
  • 如何用VUE实现用户发呆检测?
  • Android通知(Notification)全面解析:从基础到高级应用
  • 【前端】解决Vue3+Pinia中Tab切换与滚动加载数据状态异常问题
  • 05 OpenCV--图像预处理之图像轮廓、直方图均衡化、模板匹配、霍夫变化、图像亮度变化、形态学变化
  • 数据结构:下三角矩阵(Lower Triangular Matrix)
  • MySQL SQL性能优化与慢查询分析实战指南:新手DBA成长之路
  • Eigen 中矩阵的拼接(Concatenation)与 分块(Block Access)操作使用详解和示例演示
  • 简明量子态密度矩阵理论知识点总结
  • 搜索二维矩阵Ⅱ C++
  • 【LeetCode】算法详解#10 ---搜索二维矩阵II
  • 秩为1的矩阵的特征和性质
  • 青少年编程高阶课程介绍
  • 青少年编程中阶课
  • 『 C++ 入门到放弃 』- 哈希表
  • 攻防世界-引导-Web_php_unserialize
  • 《LeetCode 热题 100》整整 100 题量大管饱题解套餐 中
  • cacti的RCE
  • 关于“PromptPilot” 之3 -Prompt构造器核心专项能力:任务调度
  • keepalived原理及实战部署
  • MBR和GPT分区的区别
  • 电商项目DevOps一体化运维实战
  • 【Datawhale夏令营】端侧Agent开发实践