当前位置: 首页 > news >正文

OpenCV(02)图像颜色处理,灰度化,二值化,仿射变换

图像颜色加法

  • 颜色加法
import cv2 as cv
import numpy as np#读图
cao = cv.imread('E:\hqyj\code\opencv\images\cao.png')
pig = cv.imread('E:\hqyj\code\opencv\images\pig.png')
#饱和操作 cv.add(img1,img2) np.uint8
dst1 = cv.add(cao,pig)
#numpy直接相加 取模运算 对256取模 250+10=4
dst2 = cao+pig
# print(cao)
# print(pig)
# print(dst1)
cv.imshow('dst1',dst1)
cv.imshow('dst2',dst2)x = np.uint8([[250]])
y = np.uint8([[10]])
xy1 = cv.add(x,y)
xy2 = x+y
print(xy1)
print(xy2)dst3 = cv.addWeighted(cao,0.2,pig,0.8,0)
cv.imshow('dst3',dst3)cv.waitKey(0)
cv.destroyAllWindows()
  • 图像转换
import cv2 as cv
import numpy as np# 读取图片
img = cv.imread('E:\hqyj\code\opencv\images\pig.png')
# 颜色转换 cv.cvtColor(img, cv.COLOR_BGR2HSV)->图像,转换方式
# 灰度图
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
cv.imshow('gray',gray)
# 转hsv
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
cv.imshow('hsv',hsv)
# bgr转rgb
rgb = cv.cvtColor(img,cv.COLOR_BGR2RGB)
cv.imshow('rgb',rgb)cv.waitKey(0)
cv.destroyAllWindows()

灰度化

  • 最大值法
import cv2 as cv
import numpy as np#读取图像
pig = cv.imread('E:\hqyj\code\opencv\images\pig.png')
shape = pig.shape   #(h,w,c)
img = np.zeros((shape[0],shape[1]),dtype = np.uint8)
#for循环遍历像素点
for i in range(shape[0]):for j in range(shape[1]):img[i,j] = max(pig[i,j,0],pig[i,j,1],pig[i,j,2])
cv.imshow('grey',img)
cv.waitKey(0)
cv.destroyAllWindows()
  • 平均值法
import cv2 as cv
import numpy as np#读取图像
pig = cv.imread('E:\hqyj\code\opencv\images\pig.png')
shape = pig.shape   #(h,w,c)
img = np.zeros((shape[0],shape[1]),dtype = np.uint8)
#for循环遍历像素点
for i in range(shape[0]):for j in range(shape[1]):#将int():转换为更大的类型,防止溢出img[i,j] =np.uint8((int(pig[i,j,0])+int(pig[i,j,1])+int(pig[i,j,2]))/3)
cv.imshow('grey',img)
cv.waitKey(0)
cv.destroyAllWindows()
  • 加权平均值法
import cv2 as cv
import numpy as np#读取图像
pig = cv.imread('E:\hqyj\code\opencv\images\pig.png')
shape = pig.shape   #(h,w,c)
img = np.zeros((shape[0],shape[1]),dtype = np.uint8)
#定义权重
wb,wg,wr = 0.114,0.587,0.299
#for循环遍历像素点
for i in range(shape[0]):for j in range(shape[1]):#将int():转换为更大的类型,防止溢出img[i,j] = round((wb * pig[i,j,0] + wg * pig[i,j,1] + wr * pig[i,j,2])//3)cv.imshow('grey',img)
cv.waitKey(0)
cv.destroyAllWindows()

二值化

  • 二值化(阈值法)格式:阈值法:
    _,binary = cv2.threshold(img,thresh,maxval,type)
    _binary:cv2.threshold 函数返回两个值:一个是计算出的最佳阈值(retval),另一个是阈值处理后的图像(binary),_ 被用来忽略返回值中的第一个元素,即计算出的最佳阈值
    img:输入图像,要进行二值化处理的灰度图。
    thresh:设定的阈值。当像素值大于(或小于,取决于阈值类型)thresh时,该像素被赋予的值。
    type:阈值处理的类型。
  • 自适应二值化格式:
    cv2.adaptiveThreshold(image_np_gray, maxval, adaptiveMethod, thresholdType, blockSize, c)
    其中各个参数的含义如下:
    maxval:最大阈值,一般为255
    adaptiveMethod:小区域阈值的计算方式:
    ADAPTIVE_THRESH_MEAN_C:小区域内取均值
    ADAPTIVE_THRESH_GAUSSIAN_C:小区域内加权求和,权重是个高斯核
    thresholdType:二值化方法,只能使用THRESH_BINARY、THRESH_BINARY_INV,也就是阈值法和反阈值法
    blockSize:选取的小区域的面积,如7就是7*7的小块。(只能取奇数)
    c:最终阈值等于小区域计算出的阈值再减去此值
import cv2 as cv#读图
flower = cv.imread('E:\hqyj\code\opencv\images\\flower.png')
#灰度化处理
gray = cv.cvtColor(flower,cv.COLOR_BGR2GRAY)
gray = cv.resize(gray,(360,360))
cv.imshow('1.gray',gray)#二值化 1.阈值法  cv.THRESH_BINARY
thresh,binary = cv.threshold(gray,127,255,cv.THRESH_BINARY)
print(thresh)
cv.imshow('2.binary',binary)#2.反阈值法   cv.THRESH_BINARY_INV
_,binary_inv = cv.threshold(gray,127,255,cv.THRESH_BINARY_INV)
cv.imshow('3.binary_inv',binary_inv)#3.截断阈值法 cv.THRESH_TRUNC
_,binary_trunc = cv.threshold(gray,170,255,cv.THRESH_TRUNC)
cv.imshow('4.binary_trunc',binary_trunc)#4.低阈值零处理法 cv.THRESH_TOZERO
_,binary_tozero = cv.threshold(gray,127,255,cv.THRESH_TOZERO)
cv.imshow('5.binary_tozero',binary_tozero)#5.超阈值零处理法 cv.THRESH_TOZERO_INV
_,binary_tozero_inv = cv.threshold(gray,127,255,cv.THRESH_TOZERO_INV)
cv.imshow('6.binary_tozero_inv',binary_tozero_inv)#6.OTSU阈值法
shresh1,otsu=cv.threshold(gray,200,255,cv.THRESH_OTSU)
#7.OTSU+反阈值法
shresh2,otsu_inv = cv.threshold(gray,shresh1,255,cv.THRESH_BINARY_INV)
print(shresh1)
print(shresh2)
cv.imshow('7.otsu',otsu)#自适应二值化 小区域计算 必须只能结合阈值法或反阈值法
#1.取均值
binary_adaptive = cv.adaptiveThreshold(gray,255,cv.ADAPTIVE_THRESH_MEAN_C,cv.THRESH_BINARY,7,10)
#2.加权求和法 高斯核
adaptive_binary = cv.adaptiveThreshold(gray,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,11,10)
cv.imshow('8.binary_adaptive',binary_adaptive)
cv.imshow('9.adaptive_binary',adaptive_binary)cv.waitKey(0)
cv.destroyAllWindows()

仿射变换

  • 仿射变换流程
    1.读图cv.imread(),调尺寸cv.resize()
    2.获取仿射变换矩阵
1.旋转:M = cv.getRotationMatrix2D(center,angle,scale) center:旋转中心点的坐标,格式为`(x,y)`。angle:旋转角度,单位为度,正值表示逆时针旋转负值表示顺时针旋转。scale:缩放比例,若设为1,则不缩放。
2.平移:M = np.float32([[1,0,tx],[0,1,ty]])
3.缩放:M = np.float32([[sx,0,0],[0,sy,0]])
4.剪切:M = np.float32([[shx,1,0],[1,shy,0]])
  • 旋转
import cv2 as cv#读图
cat = cv.imread('E:\hqyj\code\opencv\images\\cat1.png')
cat = cv.resize(cat,(520,520))
#获取旋转矩阵 cvv2.getRotationMatrix2D(center,angle,scale) 2x3
M = cv.getRotationMatrix2D((260,260),-45,1)
#仿射变换函数 cv.warpAffine(img,M,(w,h))
img = cv.warpAffine(cat,M,(520,520))
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()
  • 平移
import cv2 as cv
import numpy as np#读图
cat = cv.imread('E:\hqyj\code\opencv\images\\cat1.png')
cat = cv.resize(cat,(520,520))
#定义平移量
tx,ty = 80,120
#定义平移矩阵
M = np.float32([[1,0,tx],[0,1,ty]])
#仿射变换函数 M = cv.warpAffine(img,M,(w,h))
img = cv.warpAffine(cat,M,(520,520))
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()
  • 缩放
import cv2 as cv
import numpy as np#读图
cat = cv.imread('E:\hqyj\code\opencv\images\\cat1.png')
cat = cv.resize(cat,(520,520))
#定义缩放量
sx,sy = 0.5,0.5
#定义缩放矩阵
M = np.float32([[sx,0,0],[0,sy,0]])
#仿射变换函数 cv.warpAffine(img,M,(w,h))
img = cv.warpAffine(cat,M,(520,520))
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()
  • 剪切
import cv2 as cv
import numpy as np#读图
cat = cv.imread('E:\hqyj\code\opencv\images\\cat1.png')
cat = cv.resize(cat,(520,520))
#定义缩放量
shx,shy = 0.5,0.5
#定义缩放矩阵
M = np.float32([[shx,1,0],[1,shy,0]])
#仿射变换函数 cv.warpAffine(img,M,(w,h))
img = cv.warpAffine(cat,M,(520,520))
cv.imshow('img',img)
cv.waitKey(0)
cv.destroyAllWindows()
http://www.lryc.cn/news/597858.html

相关文章:

  • 【学习笔记】机器学习(Machine Learning) | 第七章|神经网络(3)
  • 解决sparksql创建出来的数据库路径错误的问题
  • VSCode 开发 STM32 - clangd 带来的极致补全体验
  • 13. event.target 和 event.currentTarget 区别
  • 加载用户设置时遇到错误找到一个带有无效“icon“的配置文件。将该配置文件默认为无图标。确保设置“icon“时,该值是图像的有效文件路径“
  • ElasticSearch基础数据查询和管理详解
  • 电商项目_秒杀_压测
  • 多服务器批量发布软件
  • SQL难点突破之复杂业务逻辑的SQL查询实战
  • 力扣刷题(第九十六天)
  • arm64架构开发板上调用奥比中光深度摄像头用于视觉测距
  • 利用DeepSeek编写一个使用lzav算法的文件压缩工具
  • 【JavaSE】正则表达式学习笔记
  • Android Multidex 完全解析:解决64K方法数限制
  • MYSQL笔记4
  • 设备虚拟化
  • 不一样的Mysql安装方式
  • 主要科技公司与新创公司 AI Agent 进展调研
  • 【MySQL】MySQL 索引详解
  • 论文笔记:Tuning Language Models by Proxy
  • HDFS写性能优化技巧详解:从理论到实践
  • 1688 商品数据采集的应用行业与接入方式
  • Linux运维新手的修炼手扎之第24天
  • 本地运行C++版StableDiffusion!开源应用StableVerce发布
  • Java并发编程:锁机制
  • C++(面向对象封装、继承、多态)
  • 深度图像滤波
  • UI测试平台TestComplete:高效覆盖风险,加速持续交付
  • 基于python的微博评论和博文文本分析,包括LDA+聚类+词频分析+lstm热度预测,数据量10000条
  • Ubuntu22.04.5 LTS安装与使用Docker