当前位置: 首页 > news >正文

第十四届全国大学生数学竞赛初赛试题(非数学专业类)

第十四届全国大学生数学竞赛初赛试题(非数学专业类)

文章目录

  • 第十四届全国大学生数学竞赛初赛试题(非数学专业类)
    • 题目速览
      • 填空题
      • 简答题
    • 逐题详解

题目速览

填空题

  1. 极限
    lim⁡x→01−1−x2cos⁡x1+x2−cos⁡2x=.\lim\limits_{x \to 0} \frac{1 - \sqrt{1 - x^2} \cos x}{1 + x^2 - \cos^2 x} = \rule{2cm}{0.7pt}.x0lim1+x2cos2x11x2cosx=.

  2. f(x)={1,x>0,0,x≤0,g(x)={1−x,x<1,x−1,x≥1,f(x) = \begin{cases} 1, & x > 0, \\ 0, & x \leq 0, \end{cases} \quad g(x) = \begin{cases} 1 - x, & x < 1, \\ x-1, & x \ge 1, \end{cases}f(x)={1,0,x>0,x0,g(x)={1x,x1,x<1,x1, 则复合函数 f[g(x)]f[g(x)]f[g(x)] 的间断点为 x=x = \rule{2cm}{0.7pt}x=.

  3. 极限 lim⁡x→1−(1−x)3∑n=1∞n2xn=.\lim\limits_{x \to 1^-} (1 - x)^3 \sum\limits_{n = 1}^{\infty} n^2 x^n =\rule{2cm}{0.7pt}.x1lim(1x)3n=1n2xn=.

  4. 微分方程 dydxxln⁡x⋅sin⁡y+cos⁡y(1−xcos⁡y)=0\dfrac{\mathrm{d}y}{\mathrm{d}x} x \ln x \cdot \sin y + \cos y (1 - x \cos y) = 0dxdyxlnxsiny+cosy(1xcosy)=0 的通解为 .\rule{2cm}{0.7pt}..

  5. D={(x,y)∣0≤x+y≤π2,0≤x−y≤π2}D = \left\{ (x, y) \left| 0 \leq x + y \leq \dfrac{\pi}{2}, 0 \leq x - y \leq \dfrac{\pi}{2} \right. \right\}D={(x,y)0x+y2π,0xy2π}, 则
    ∬Dysin⁡(x+y)dxdy=.\iint\limits_D y \sin(x + y) dxdy = \rule{2cm}{0.7pt}.Dysin(x+y)dxdy=.

简答题

  1. 设向量 OA→\overrightarrow{OA}OAOB→\overrightarrow{OB}OB 的夹角为 α\alphaα, ∣OA→∣=1|\overrightarrow{OA}| = 1OA=1, ∣OB→∣=2|\overrightarrow{OB}| = 2OB=2, OP→=(1−λ)OA→\overrightarrow{OP} = (1 - \lambda) \overrightarrow{OA}OP=(1λ)OA, OQ→=λOB→\overrightarrow{OQ} = \lambda \overrightarrow{OB}OQ=λOB, 其中 0≤λ≤10 \leq \lambda \leq 10λ1.

  • 问当 λ\lambdaλ 为何值时, ∣PQ→∣|\overrightarrow{PQ}|PQ 取得最小值;
  • 设 (1) 中的 λ\lambdaλ 满足 0<λ<150 < \lambda < \dfrac{1}{5}0<λ<51, 求夹角 α\alphaα 的取值范围.
  1. 设函数 f(x)f(x)f(x)(−1,1)(-1, 1)(1,1) 上二阶可导, f(0)=1f(0) = 1f(0)=1, 且当 x≥0x \geq 0x0 时, f(x)≥0f(x) \geq 0f(x)0, f′(x)≤0f'(x) \leq 0f(x)0, f′′(x)≤f(x)f''(x) \leq f(x)f′′(x)f(x). 证明: f′(0)≥−2f'(0) \geq -\sqrt{2}f(0)2.

  2. 证明: 对任意正整数 nnn, 恒有
    ∫0π2(sin⁡nxsin⁡x)4dx≤(n24−18)π2.\int_0^{\frac{\pi}{2}} \left( \frac{\sin nx}{\sin x} \right)^4 dx \leq \left( \frac{n^2}{4} - \frac{1}{8} \right) \pi^2.02π(sinxsinnx)4dx(4n281)π2.

  3. z=f(x,y)z = f(x, y)z=f(x,y) 是区域 D={(x,y)∣0≤x≤1,0≤y≤1}D = \left\{ (x, y) \left| 0 \leq x \leq 1, 0 \leq y \leq 1 \right. \right\}D={(x,y)0x1,0y1} 上的可微函数. f(0,0)=0f(0, 0) = 0f(0,0)=0, 且 dz∣(0,0)=3dx+2dy\mathrm{d}z|_{(0,0)} = 3\mathrm{d}x + 2\mathrm{d}ydz(0,0)=3dx+2dy, 求极限
    lim⁡x→0+∫0x2dt∫tt4f(t,u)du1−1−x44\lim\limits_{x \to 0^+} \dfrac{\int_0^{x^2} \mathrm{d}t \int_{\sqrt{t}}^{\sqrt[4]{t}} f(t, u) \mathrm{d}u}{1 - \sqrt[4]{1 - x^4}}x0+lim141x40x2dtt4tf(t,u)du

  4. 设正项级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1an 收敛, 证明: 存在收敛的正项级数 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1bn, 使得 lim⁡n→∞anbn=0\lim\limits_{n \to \infty} \dfrac{a_n}{b_n} = 0nlimbnan=0.

逐题详解

  1. 极限
    lim⁡x→01−1−x2cos⁡x1+x2−cos⁡2x=.\lim\limits_{x \to 0} \frac{1 - \sqrt{1 - x^2} \cos x}{1 + x^2 - \cos^2 x} = \rule{2cm}{0.7pt}.x0lim1+x2cos2x11x2cosx=.

lim⁡x→01−1−x2cos⁡x1+x2−cos⁡2x=lim⁡x→01−x2sin⁡x+xcos⁡x1−x22x+2cos⁡xsin⁡x=lim⁡x→01−x2sin⁡xx+cos⁡x1−x22+2cos⁡xsin⁡xx=12\begin{align*} \lim\limits_{x \to 0} \frac{1 - \sqrt{1 - x^2} \cos x}{1 + x^2 - \cos^2 x} &=\lim\limits_{x \to 0} \frac{\sqrt{1 - x^2} \sin x+\dfrac{x\cos x}{\sqrt{1-x^2}}}{2x+2\cos{x}\sin{x}}\\& =\lim\limits_{x \to 0} \frac{\dfrac{\sqrt{1 - x^2} \sin x}{x}+\dfrac{\cos x}{\sqrt{1-x^2}}}{2+2\cos{x}\dfrac{\sin{x}}{x}}\\ &=\frac{1}{2} \end{align*} x0lim1+x2cos2x11x2cosx=x0lim2x+2cosxsinx1x2sinx+1x2xcosx=x0lim2+2cosxxsinxx1x2sinx+1x2cosx=21

  1. f(x)={1,x>0,0,x≤0,g(x)={1−x,x<1,x−1,x≥1,f(x) = \begin{cases} 1, & x > 0, \\ 0, & x \leq 0, \end{cases} \quad g(x) = \begin{cases} 1 - x, & x < 1, \\ x-1, & x \ge 1, \end{cases}f(x)={1,0,x>0,x0,g(x)={1x,x1,x<1,x1, 则复合函数 f[g(x)]f[g(x)]f[g(x)] 的间断点为 x=x = \rule{2cm}{0.7pt}x=.

f∘g(x)={1,x≠10,x=1f\circ g(x)=\begin{cases} 1,\quad x\ne 1\\0,\quad x=1 \end{cases} fg(x)={1,x=10,x=1
唯一间断点为x=1x=1x=1

  1. 极限 lim⁡x→1−(1−x)3∑n=1∞n2xn=.\lim\limits_{x \to 1^-} (1 - x)^3 \sum\limits_{n = 1}^{\infty} n^2 x^n =\rule{2cm}{0.7pt}.x1lim(1x)3n=1n2xn=.

lim⁡x→1−(1−x)3∑n=1∞n2xn=lim⁡x→1−(1−x)3x2+x(1−x)3=2\begin{align*} \lim\limits_{x \to 1^-} (1 - x)^3 \sum\limits_{n = 1}^{\infty} n^2 x^n =\lim\limits_{x \to 1^-} (1 - x)^3 \frac{x^2+x}{(1-x)^3} =2 \end{align*} x1lim(1x)3n=1n2xn=x1lim(1x)3(1x)3x2+x=2

  1. 微分方程 dydxxln⁡x⋅sin⁡y+cos⁡y(1−xcos⁡y)=0\dfrac{\mathrm{d}y}{\mathrm{d}x} x \ln x \cdot \sin y + \cos y (1 - x \cos y) = 0dxdyxlnxsiny+cosy(1xcosy)=0 的通解为 .\rule{2cm}{0.7pt}..

dydxxln⁡x⋅sin⁡y+cos⁡y(1−xcos⁡y)=0dcos⁡ydx+cos⁡yxln⁡x−cos⁡2yln⁡x=0d1cos⁡ydx+1cos⁡yxln⁡x−1ln⁡x=0⇒1cos⁡y=e−∫dxxln⁡x(∫1ln⁡xe∫dxxln⁡xdx+C)\begin{align*} \dfrac{\mathrm{d}y}{\mathrm{d}x} x \ln x \cdot \sin y + \cos y (1 - x \cos y) &= 0\\ \dfrac{\mathrm{d}\cos{y}}{\mathrm{d}x} + \frac{\cos y}{x \ln x } - \frac{\cos^2 y}{\ln x } &= 0\\ \dfrac{\mathrm{d}\frac{1}{\cos{y}}}{\mathrm{d}x} + \frac{\frac{1}{\cos y}}{x \ln x } - \frac{1}{\ln x } &= 0\\ \Rightarrow \frac{1}{\cos{}y}=e^{-\int\frac{\mathrm{d}x}{x\ln{x}}}&\left(\int \frac{1}{\ln{x}}e^{\int\frac{\mathrm{d}x}{x\ln{x}}}\mathrm{d}x+C\right) \end{align*} dxdyxlnxsiny+cosy(1xcosy)dxdcosy+xlnxcosylnxcos2ydxdcosy1+xlnxcosy1lnx1cosy1=exlnxdx=0=0=0(lnx1exlnxdxdx+C)

得到:
(x+C)cos⁡y=ln⁡x(x+C)\cos y=\ln x(x+C)cosy=lnx

  1. D={(x,y)∣0≤x+y≤π2,0≤x−y≤π2}D = \left\{ (x, y) \left| 0 \leq x + y \leq \dfrac{\pi}{2}, 0 \leq x - y \leq \dfrac{\pi}{2} \right. \right\}D={(x,y)0x+y2π,0xy2π}, 则
    ∬Dysin⁡(x+y)dxdy=.\iint\limits_D y \sin(x + y) dxdy = \rule{2cm}{0.7pt}.Dysin(x+y)dxdy=.

利用二元变量代换, 令 {u=x+y,v=x−y,\begin{cases} u = x + y, \\ v = x - y, \end{cases}{u=x+y,v=xy,{x=12(u+v),y=12(u−v).\begin{cases} x = \dfrac{1}{2}(u + v), \\ y = \dfrac{1}{2}(u - v). \end{cases}x=21(u+v),y=21(uv). 因为

J=∣∂x∂u∂x∂v∂y∂u∂y∂v∣=∣121212−12∣=−12,J = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \dfrac{1}{2} & \dfrac{1}{2} \\ \dfrac{1}{2} & -\dfrac{1}{2} \end{vmatrix} = -\dfrac{1}{2}, J=uxuyvxvy=21212121=21,

所以

原式=∣J∣∫0π2∫0π212(u−v)sin⁡ududv=14∫0π2dv∫0π2usin⁡udu−14∫0π2vdv∫0π2sin⁡udu=14×π2×1−14×π28×1=π8−π232.\begin{aligned} \text{原式} &= |J| \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \dfrac{1}{2}(u - v) \sin u \, \mathrm{d}u \, \mathrm{d}v \\ &= \dfrac{1}{4} \int_{0}^{\frac{\pi}{2}} \mathrm{d}v \int_{0}^{\frac{\pi}{2}} u \sin u \, \mathrm{d}u - \dfrac{1}{4} \int_{0}^{\frac{\pi}{2}} v \, \mathrm{d}v \int_{0}^{\frac{\pi}{2}} \sin u \, \mathrm{d}u \\ &= \dfrac{1}{4} \times \dfrac{\pi}{2} \times 1 - \dfrac{1}{4} \times \dfrac{\pi^2}{8} \times 1 = \dfrac{\pi}{8} - \dfrac{\pi^2}{32}. \end{aligned} 原式=J02π02π21(uv)sinududv=4102πdv02πusinudu4102πvdv02πsinudu=41×2π×141×8π2×1=8π32π2.

  1. 设向量 OA→\overrightarrow{OA}OAOB→\overrightarrow{OB}OB 的夹角为 α\alphaα, ∣OA→∣=1|\overrightarrow{OA}| = 1OA=1, ∣OB→∣=2|\overrightarrow{OB}| = 2OB=2, OP→=(1−λ)OA→\overrightarrow{OP} = (1 - \lambda) \overrightarrow{OA}OP=(1λ)OA, OQ→=λOB→\overrightarrow{OQ} = \lambda \overrightarrow{OB}OQ=λOB, 其中 0≤λ≤10 \leq \lambda \leq 10λ1.
  • 问当 λ\lambdaλ 为何值时, ∣PQ→∣|\overrightarrow{PQ}|PQ 取得最小值;
  • 设 (1) 中的 λ\lambdaλ 满足 0<λ<150 < \lambda < \dfrac{1}{5}0<λ<51, 求夹角 α\alphaα 的取值范围.

(1)由余弦定理:
f(λ)=∣PQ→∣2=(1−λ)2+4λ2−4λ(1−λ)cos⁡α=(5+4cos⁡α)λ2−2(1+2cos⁡α)λ+1=(5+4cos⁡α)(λ−1+2cos⁡α5+4cos⁡α)2+1−(1+2cos⁡α)25+4cos⁡α\begin{align*} f(\lambda)&=\vert\overrightarrow{PQ}\vert^2=(1-\lambda)^2+4\lambda^2-4\lambda(1-\lambda)\cos{\alpha}\\ &=(5+4\cos{\alpha})\lambda^2-2(1+2\cos{\alpha})\lambda+1\\ &=(5+4\cos{\alpha})\left(\lambda-\frac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\right)^2+1-\frac{(1+2\cos{\alpha})^2}{5+4\cos{\alpha}} \end{align*} f(λ)=PQ2=(1λ)2+4λ24λ(1λ)cosα=(5+4cosα)λ22(1+2cosα)λ+1=(5+4cosα)(λ5+4cosα1+2cosα)2+15+4cosα(1+2cosα)2
0≤1+2cos⁡α5+4cos⁡α≤10\leq \dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\leq 105+4cosα1+2cosα1λ=1+2cos⁡α5+4cos⁡α\lambda=\dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}λ=5+4cosα1+2cosα取最小。
1+2cos⁡α5+4cos⁡α≤0\dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\leq 05+4cosα1+2cosα0λ=0\lambda=0λ=0取最小。

(2)

解不等式:

0≤1+2cos⁡α5+4cos⁡α≤150\leq\dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\leq \dfrac{1}{5}05+4cosα1+2cosα51

得到:

α∈(π2,2π3)\alpha\in\left(\dfrac{\pi}{2},\dfrac{2\pi}{3}\right)α(2π,32π)

  1. 设函数 f(x)f(x)f(x)(−1,1)(-1, 1)(1,1) 上二阶可导, f(0)=1f(0) = 1f(0)=1, 且当 x≥0x \geq 0x0 时, f(x)≥0f(x) \geq 0f(x)0, f′(x)≤0f'(x) \leq 0f(x)0, f′′(x)≤f(x)f''(x) \leq f(x)f′′(x)f(x). 证明: f′(0)≥−2f'(0) \geq -\sqrt{2}f(0)2.

构造辅助函数 g(x)=[f′(x)]2−[f(x)]2g(x) = [f'(x)]^2 - [f(x)]^2g(x)=[f(x)]2[f(x)]2,求导得:
g′(x)=2f′(x)f′′(x)−2f(x)f′(x)=2f′(x)[f′′(x)−f(x)].g'(x) = 2f'(x)f''(x) - 2f(x)f'(x) = 2f'(x)[f''(x) - f(x)]. g(x)=2f(x)f′′(x)2f(x)f(x)=2f(x)[f′′(x)f(x)].
由条件 f′′(x)≤f(x)f''(x) \leq f(x)f′′(x)f(x)f′(x)≤0f'(x) \leq 0f(x)0(当 x≥0x \geq 0x0时),可知 g′(x)≥0g'(x) \geq 0g(x)0,即 g(x)g(x)g(x)[0,1)[0, 1)[0,1)上单调递增。因此,对任意 x≥0x \geq 0x0,有:
g(x)≥g(0)=[f′(0)]2−[f(0)]2=[f′(0)]2−1.g(x) \geq g(0) = [f'(0)]^2 - [f(0)]^2 = [f'(0)]^2 - 1. g(x)g(0)=[f(0)]2[f(0)]2=[f(0)]21.

另一方面,由 f′(x)≤0f'(x) \leq 0f(x)0f(x)f(x)f(x)[0,1)[0, 1)[0,1) 上非增,故f(x)≤f(0)=1f(x) \leq f(0) = 1f(x)f(0)=1。结合 f(x)≥0f(x) \geq 0f(x)0,得:
[f(x)]2≤1⇒−[f(x)]2≥−1.[f(x)]^2 \leq 1 \quad \Rightarrow \quad -[f(x)]^2 \geq -1. [f(x)]21[f(x)]21.

g(x)=[f′(x)]2−[f(x)]2g(x) = [f'(x)]^2 - [f(x)]^2g(x)=[f(x)]2[f(x)]2 代入:
[f′(x)]2−[f(x)]2≥[f′(0)]2−1⇒[f′(x)]2≥[f′(0)]2−1+[f(x)]2.[f'(x)]^2 - [f(x)]^2 \geq [f'(0)]^2 - 1 \quad \Rightarrow \quad [f'(x)]^2 \geq [f'(0)]^2 - 1 + [f(x)]^2. [f(x)]2[f(x)]2[f(0)]21[f(x)]2[f(0)]21+[f(x)]2.
由于[f(x)]2≥0[f(x)]^2 \geq 0[f(x)]20,故:
[f′(x)]2≥[f′(0)]2−1.[f'(x)]^2 \geq [f'(0)]^2 - 1. [f(x)]2[f(0)]21.

假设f′(0)<−2f'(0) < -\sqrt{2}f(0)<2,则 [f′(0)]2>2[f'(0)]^2 > 2[f(0)]2>2
[f′(x)]2≥2−1=1⇒f′(x)≤−1(∀x≥0).[f'(x)]^2 \geq 2 - 1 = 1 \quad \Rightarrow \quad f'(x) \leq -1 \quad (\forall x \geq 0). [f(x)]221=1f(x)1(x0).
f′(x)≤−1f'(x) \leq -1f(x)1积分:
f(x)−f(0)=∫0xf′(t)dt≤∫0x(−1)dt=−x⇒f(x)≤1−x.f(x) - f(0) = \int_0^x f'(t) \, dt \leq \int_0^x (-1) \, dt = -x \quad \Rightarrow \quad f(x) \leq 1 - x. f(x)f(0)=0xf(t)dt0x(1)dt=xf(x)1x.
x→1−x \to 1^-x1 时,f(x)→−∞f(x) \to -\inftyf(x),与 f(x)≥0f(x) \geq 0f(x)0 矛盾。因此,假设不成立,必有 f′(0)≥−2f'(0) \geq -\sqrt{2}f(0)2

  1. 证明: 对任意正整数 nnn, 恒有
    ∫0π2(sin⁡nxsin⁡x)4dx≤(n24−18)π2.\int_0^{\frac{\pi}{2}} \left( \frac{\sin nx}{\sin x} \right)^4 dx \leq \left( \frac{n^2}{4} - \frac{1}{8} \right) \pi^2.02π(sinxsinnx)4dx(4n281)π2.


首先,利用归纳法易证:对 n⩾1n \geqslant 1n1∣sin⁡nx∣⩽nsin⁡x(0⩽x⩽π2)|\sin nx| \leqslant n\sin x \left(0 \leqslant x \leqslant \frac{\pi}{2}\right)sinnxnsinx(0x2π)。又由于 ∣sin⁡nx∣⩽1|\sin nx| \leqslant 1sinnx1sin⁡x⩾2πx(0⩽x⩽π2)\sin x \geqslant \frac{2}{\pi}x \left(0 \leqslant x \leqslant \frac{\pi}{2}\right)sinxπ2x(0x2π),所以当 n>1n > 1n>1 时,得
∫0π2x(sin⁡nxsin⁡x)4dx=∫0π2nx(sin⁡nxsin⁡x)4dx+∫π2nπ2x(sin⁡nxsin⁡x)4dx⩽n4∫0π2nxdx+∫π2nπ2x(12xπ)4dx=n42(π2n)2+π416∫π2nπ2dxx3=n2π28+π416⋅1−2x2∣π2nπ2=n2π28−π432(4π2−4n2π2)=(n24−18)π2.\begin{aligned} \int_{0}^{\frac{\pi}{2}} x \left( \frac{\sin nx}{\sin x} \right)^4 dx &= \int_{0}^{\frac{\pi}{2n}} x \left( \frac{\sin nx}{\sin x} \right)^4 dx + \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} x \left( \frac{\sin nx}{\sin x} \right)^4 dx \\ &\leqslant n^4 \int_{0}^{\frac{\pi}{2n}} x dx + \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} x \left( \frac{1}{\frac{2x}{\pi}} \right)^4 dx \\ &= \frac{n^4}{2} \left( \frac{\pi}{2n} \right)^2 + \frac{\pi^4}{16} \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} \frac{dx}{x^3} \\ &= \frac{n^2 \pi^2}{8} + \frac{\pi^4}{16} \cdot \left. \frac{1}{-2x^2} \right|_{\frac{\pi}{2n}}^{\frac{\pi}{2}} \\ &= \frac{n^2 \pi^2}{8} - \frac{\pi^4}{32} \left( \frac{4}{\pi^2} - \frac{4n^2}{\pi^2} \right) \\ &= \left( \frac{n^2}{4} - \frac{1}{8} \right) \pi^2. \end{aligned} 02πx(sinxsinnx)4dx=02nπx(sinxsinnx)4dx+2nπ2πx(sinxsinnx)4dxn402nπxdx+2nπ2πx(π2x1)4dx=2n4(2nπ)2+16π42nπ2πx3dx=8n2π2+16π42x212nπ2π=8n2π232π4(π24π24n2)=(4n281)π2.
n=1n = 1n=1 时,∫0π2xdx=π28\int_{0}^{\frac{\pi}{2}} x dx = \frac{\pi^2}{8}02πxdx=8π2,等号成立。

  1. z=f(x,y)z = f(x, y)z=f(x,y) 是区域 D={(x,y)∣0≤x≤1,0≤y≤1}D = \left\{ (x, y) \left| 0 \leq x \leq 1, 0 \leq y \leq 1 \right. \right\}D={(x,y)0x1,0y1} 上的可微函数. f(0,0)=0f(0, 0) = 0f(0,0)=0, 且 dz∣(0,0)=3dx+2dy\mathrm{d}z|_{(0,0)} = 3\mathrm{d}x + 2\mathrm{d}ydz(0,0)=3dx+2dy, 求极限
    lim⁡x→0+∫0x2dt∫tt4f(t,u)du1−1−x44\lim\limits_{x \to 0^+} \dfrac{\int_0^{x^2} \mathrm{d}t \int_{\sqrt{t}}^{\sqrt[4]{t}} f(t, u) \mathrm{d}u}{1 - \sqrt[4]{1 - x^4}}x0+lim141x40x2dtt4tf(t,u)du

lim⁡x→0+∫0x2dt∫tt4f(t,u)du1−1−x44=lim⁡x→0+∫0x2dt∫xtf(t,u)du14x4=−lim⁡x→0+∫0x2f(t,x)dtx3=−lim⁡x→0f(ξ,x)x,0<ξ<x2=lim⁡x→03ξ+2x+o(ξ2+x2)x=−2\begin{align*} \lim_{x \to 0^+} \frac{\int_0^{x^2} \mathrm{d}t \int_{\sqrt{t}}^{\sqrt[4]{t}} f(t, u) \mathrm{d}u}{1 - \sqrt[4]{1 - x^4}}&=\lim_{x \to 0^+} \frac{\int_{0}^{x^2}\mathrm{d}t\int_{x}^{\sqrt{t}}f(t,u)\mathrm{d}u}{\frac{1}{4}x^4}\\ &=-\lim_{x \to 0^+} \frac{\int_{0}^{x^2}f(t,x)\mathrm{d}t}{x^3}\\ &=-\lim_{x\rightarrow 0}\frac{f(\xi,x)}{x},\quad 0<\xi<x^2\\ &=\lim_{x\rightarrow 0}\frac{3\xi+2x+o(\sqrt{\xi^2+x^2})}{x}\\ &=-2 \end{align*} x0+lim141x40x2dtt4tf(t,u)du=x0+lim41x40x2dtxtf(t,u)du=x0+limx30x2f(t,x)dt=x0limxf(ξ,x),0<ξ<x2=x0limx3ξ+2x+o(ξ2+x2)=2

  1. 设正项级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1an 收敛, 证明: 存在收敛的正项级数 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1bn, 使得 lim⁡n→∞anbn=0\lim\limits_{n \to \infty} \dfrac{a_n}{b_n} = 0nlimbnan=0.

因正项级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1an 收敛,故级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1an 的余项 Rn>0R_n>0Rn>0 单调减少趋于 000

bn=Rn−Rn+1,n=1,2,⋯b_n=\sqrt{R_n}-\sqrt{R_{n + 1}},n = 1,2,\cdotsbn=RnRn+1,n=1,2,,则 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1bn 是正项级数,其部分和

∑k=1nbk=∑k=1n(Rk−Rk+1)=R1−Rn+1<R1\sum_{k = 1}^{n} b_k=\sum_{k = 1}^{n}(\sqrt{R_k}-\sqrt{R_{k + 1}})=\sqrt{R_1}-\sqrt{R_{n + 1}}<\sqrt{R_1} k=1nbk=k=1n(RkRk+1)=R1Rn+1<R1

有界,因此 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1bn 收敛,且

lim⁡n→∞anbn=lim⁡n→∞Rn−Rn+1Rn−Rn+1=lim⁡n→∞(Rn+Rn+1)=0\lim_{n \to \infty} \frac{a_n}{b_n}=\lim_{n \to \infty} \frac{R_n - R_{n + 1}}{\sqrt{R_n}-\sqrt{R_{n + 1}}}=\lim_{n \to \infty}(\sqrt{R_n}+\sqrt{R_{n + 1}})=0 nlimbnan=nlimRnRn+1RnRn+1=nlim(Rn+Rn+1)=0

http://www.lryc.cn/news/593914.html

相关文章:

  • CSS 单位完全指南:掌握 em、rem、vh、vw 等响应式布局核心单位
  • gradle微服务依赖模版
  • PHPStorm携手ThinkPHP8:开启高效开发之旅
  • 用 Jetpack Compose 写 Android 的 “Hello World”
  • RCE随笔(1)
  • RK3588 安卓adb操作
  • C++ - 仿 RabbitMQ 实现消息队列--服务端核心模块实现(一)
  • RK3588 编译 Android 13 镜像方法
  • 状态管理与团队协作 - SRE 的核心关切
  • c#:TCP服务端管理类
  • 第一章: 初识 Redis:背后的特性和典型应用场景
  • c#:管理TCP服务端发送数据为非16进制
  • 网络原理——IP
  • CentOS 服务器docker pull 拉取失败
  • Docker 在 Ubuntu 系统中的详细操作指南
  • 【Docker-Day 7】揭秘 Dockerfile 启动指令:CMD、ENTRYPOINT、ENV、ARG 与 EXPOSE 详解
  • Docker实战:使用Docker部署envlinks极简个人导航页
  • 企业级安全威胁检测与响应(EDR/XDR)架构设计
  • 如何解决pip安装报错error subprocess-exited-with-error问题
  • Twisted study notes[2]
  • 六年级数学知识边界总结思考-下册
  • 在Ubutu22系统上面离线安装Go语言环境【教程】
  • 传染病监测(六):随机模型 —— 为什么小规模疫情像掷骰子?
  • 【LeetCode 热题 100】200. 岛屿数量——DFS
  • MCP实战案例|Trae2.0 一键创建旅行助手并一键部署EdgeOne
  • axios二次封装-单个、特定的实例的拦截器、所有实例的拦截器。
  • Laravel 原子锁概念讲解
  • sqli-labs靶场通关笔记:第34-37关 宽字节注入的其他情况
  • docker Neo4j
  • PDF 编辑器:多文件合并 拆分 旋转 顺序随便调 加水印 密码锁 页码背景