第十四届全国大学生数学竞赛初赛试题(非数学专业类)
第十四届全国大学生数学竞赛初赛试题(非数学专业类)
文章目录
- 第十四届全国大学生数学竞赛初赛试题(非数学专业类)
- 题目速览
- 填空题
- 简答题
- 逐题详解
题目速览
填空题
-
极限
limx→01−1−x2cosx1+x2−cos2x=.\lim\limits_{x \to 0} \frac{1 - \sqrt{1 - x^2} \cos x}{1 + x^2 - \cos^2 x} = \rule{2cm}{0.7pt}.x→0lim1+x2−cos2x1−1−x2cosx=. -
设 f(x)={1,x>0,0,x≤0,g(x)={1−x,x<1,x−1,x≥1,f(x) = \begin{cases} 1, & x > 0, \\ 0, & x \leq 0, \end{cases} \quad g(x) = \begin{cases} 1 - x, & x < 1, \\ x-1, & x \ge 1, \end{cases}f(x)={1,0,x>0,x≤0,g(x)={1−x,x−1,x<1,x≥1, 则复合函数 f[g(x)]f[g(x)]f[g(x)] 的间断点为 x=x = \rule{2cm}{0.7pt}x=.
-
极限 limx→1−(1−x)3∑n=1∞n2xn=.\lim\limits_{x \to 1^-} (1 - x)^3 \sum\limits_{n = 1}^{\infty} n^2 x^n =\rule{2cm}{0.7pt}.x→1−lim(1−x)3n=1∑∞n2xn=.
-
微分方程 dydxxlnx⋅siny+cosy(1−xcosy)=0\dfrac{\mathrm{d}y}{\mathrm{d}x} x \ln x \cdot \sin y + \cos y (1 - x \cos y) = 0dxdyxlnx⋅siny+cosy(1−xcosy)=0 的通解为 .\rule{2cm}{0.7pt}..
-
记 D={(x,y)∣0≤x+y≤π2,0≤x−y≤π2}D = \left\{ (x, y) \left| 0 \leq x + y \leq \dfrac{\pi}{2}, 0 \leq x - y \leq \dfrac{\pi}{2} \right. \right\}D={(x,y)0≤x+y≤2π,0≤x−y≤2π}, 则
∬Dysin(x+y)dxdy=.\iint\limits_D y \sin(x + y) dxdy = \rule{2cm}{0.7pt}.D∬ysin(x+y)dxdy=.
简答题
- 设向量 OA→\overrightarrow{OA}OA 与 OB→\overrightarrow{OB}OB 的夹角为 α\alphaα, ∣OA→∣=1|\overrightarrow{OA}| = 1∣OA∣=1, ∣OB→∣=2|\overrightarrow{OB}| = 2∣OB∣=2, OP→=(1−λ)OA→\overrightarrow{OP} = (1 - \lambda) \overrightarrow{OA}OP=(1−λ)OA, OQ→=λOB→\overrightarrow{OQ} = \lambda \overrightarrow{OB}OQ=λOB, 其中 0≤λ≤10 \leq \lambda \leq 10≤λ≤1.
解
- 问当 λ\lambdaλ 为何值时, ∣PQ→∣|\overrightarrow{PQ}|∣PQ∣ 取得最小值;
- 设 (1) 中的 λ\lambdaλ 满足 0<λ<150 < \lambda < \dfrac{1}{5}0<λ<51, 求夹角 α\alphaα 的取值范围.
-
设函数 f(x)f(x)f(x) 在 (−1,1)(-1, 1)(−1,1) 上二阶可导, f(0)=1f(0) = 1f(0)=1, 且当 x≥0x \geq 0x≥0 时, f(x)≥0f(x) \geq 0f(x)≥0, f′(x)≤0f'(x) \leq 0f′(x)≤0, f′′(x)≤f(x)f''(x) \leq f(x)f′′(x)≤f(x). 证明: f′(0)≥−2f'(0) \geq -\sqrt{2}f′(0)≥−2.
-
证明: 对任意正整数 nnn, 恒有
∫0π2(sinnxsinx)4dx≤(n24−18)π2.\int_0^{\frac{\pi}{2}} \left( \frac{\sin nx}{\sin x} \right)^4 dx \leq \left( \frac{n^2}{4} - \frac{1}{8} \right) \pi^2.∫02π(sinxsinnx)4dx≤(4n2−81)π2. -
设 z=f(x,y)z = f(x, y)z=f(x,y) 是区域 D={(x,y)∣0≤x≤1,0≤y≤1}D = \left\{ (x, y) \left| 0 \leq x \leq 1, 0 \leq y \leq 1 \right. \right\}D={(x,y)∣0≤x≤1,0≤y≤1} 上的可微函数. f(0,0)=0f(0, 0) = 0f(0,0)=0, 且 dz∣(0,0)=3dx+2dy\mathrm{d}z|_{(0,0)} = 3\mathrm{d}x + 2\mathrm{d}ydz∣(0,0)=3dx+2dy, 求极限
limx→0+∫0x2dt∫tt4f(t,u)du1−1−x44\lim\limits_{x \to 0^+} \dfrac{\int_0^{x^2} \mathrm{d}t \int_{\sqrt{t}}^{\sqrt[4]{t}} f(t, u) \mathrm{d}u}{1 - \sqrt[4]{1 - x^4}}x→0+lim1−41−x4∫0x2dt∫t4tf(t,u)du -
设正项级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1∑∞an 收敛, 证明: 存在收敛的正项级数 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1∑∞bn, 使得 limn→∞anbn=0\lim\limits_{n \to \infty} \dfrac{a_n}{b_n} = 0n→∞limbnan=0.
逐题详解
- 极限
limx→01−1−x2cosx1+x2−cos2x=.\lim\limits_{x \to 0} \frac{1 - \sqrt{1 - x^2} \cos x}{1 + x^2 - \cos^2 x} = \rule{2cm}{0.7pt}.x→0lim1+x2−cos2x1−1−x2cosx=.
解
limx→01−1−x2cosx1+x2−cos2x=limx→01−x2sinx+xcosx1−x22x+2cosxsinx=limx→01−x2sinxx+cosx1−x22+2cosxsinxx=12\begin{align*} \lim\limits_{x \to 0} \frac{1 - \sqrt{1 - x^2} \cos x}{1 + x^2 - \cos^2 x} &=\lim\limits_{x \to 0} \frac{\sqrt{1 - x^2} \sin x+\dfrac{x\cos x}{\sqrt{1-x^2}}}{2x+2\cos{x}\sin{x}}\\& =\lim\limits_{x \to 0} \frac{\dfrac{\sqrt{1 - x^2} \sin x}{x}+\dfrac{\cos x}{\sqrt{1-x^2}}}{2+2\cos{x}\dfrac{\sin{x}}{x}}\\ &=\frac{1}{2} \end{align*} x→0lim1+x2−cos2x1−1−x2cosx=x→0lim2x+2cosxsinx1−x2sinx+1−x2xcosx=x→0lim2+2cosxxsinxx1−x2sinx+1−x2cosx=21
- 设 f(x)={1,x>0,0,x≤0,g(x)={1−x,x<1,x−1,x≥1,f(x) = \begin{cases} 1, & x > 0, \\ 0, & x \leq 0, \end{cases} \quad g(x) = \begin{cases} 1 - x, & x < 1, \\ x-1, & x \ge 1, \end{cases}f(x)={1,0,x>0,x≤0,g(x)={1−x,x−1,x<1,x≥1, 则复合函数 f[g(x)]f[g(x)]f[g(x)] 的间断点为 x=x = \rule{2cm}{0.7pt}x=.
解
f∘g(x)={1,x≠10,x=1f\circ g(x)=\begin{cases} 1,\quad x\ne 1\\0,\quad x=1 \end{cases} f∘g(x)={1,x=10,x=1
唯一间断点为x=1x=1x=1。
- 极限 limx→1−(1−x)3∑n=1∞n2xn=.\lim\limits_{x \to 1^-} (1 - x)^3 \sum\limits_{n = 1}^{\infty} n^2 x^n =\rule{2cm}{0.7pt}.x→1−lim(1−x)3n=1∑∞n2xn=.
解
limx→1−(1−x)3∑n=1∞n2xn=limx→1−(1−x)3x2+x(1−x)3=2\begin{align*} \lim\limits_{x \to 1^-} (1 - x)^3 \sum\limits_{n = 1}^{\infty} n^2 x^n =\lim\limits_{x \to 1^-} (1 - x)^3 \frac{x^2+x}{(1-x)^3} =2 \end{align*} x→1−lim(1−x)3n=1∑∞n2xn=x→1−lim(1−x)3(1−x)3x2+x=2
- 微分方程 dydxxlnx⋅siny+cosy(1−xcosy)=0\dfrac{\mathrm{d}y}{\mathrm{d}x} x \ln x \cdot \sin y + \cos y (1 - x \cos y) = 0dxdyxlnx⋅siny+cosy(1−xcosy)=0 的通解为 .\rule{2cm}{0.7pt}..
解
dydxxlnx⋅siny+cosy(1−xcosy)=0dcosydx+cosyxlnx−cos2ylnx=0d1cosydx+1cosyxlnx−1lnx=0⇒1cosy=e−∫dxxlnx(∫1lnxe∫dxxlnxdx+C)\begin{align*} \dfrac{\mathrm{d}y}{\mathrm{d}x} x \ln x \cdot \sin y + \cos y (1 - x \cos y) &= 0\\ \dfrac{\mathrm{d}\cos{y}}{\mathrm{d}x} + \frac{\cos y}{x \ln x } - \frac{\cos^2 y}{\ln x } &= 0\\ \dfrac{\mathrm{d}\frac{1}{\cos{y}}}{\mathrm{d}x} + \frac{\frac{1}{\cos y}}{x \ln x } - \frac{1}{\ln x } &= 0\\ \Rightarrow \frac{1}{\cos{}y}=e^{-\int\frac{\mathrm{d}x}{x\ln{x}}}&\left(\int \frac{1}{\ln{x}}e^{\int\frac{\mathrm{d}x}{x\ln{x}}}\mathrm{d}x+C\right) \end{align*} dxdyxlnx⋅siny+cosy(1−xcosy)dxdcosy+xlnxcosy−lnxcos2ydxdcosy1+xlnxcosy1−lnx1⇒cosy1=e−∫xlnxdx=0=0=0(∫lnx1e∫xlnxdxdx+C)
得到:
(x+C)cosy=lnx(x+C)\cos y=\ln x(x+C)cosy=lnx
- 记 D={(x,y)∣0≤x+y≤π2,0≤x−y≤π2}D = \left\{ (x, y) \left| 0 \leq x + y \leq \dfrac{\pi}{2}, 0 \leq x - y \leq \dfrac{\pi}{2} \right. \right\}D={(x,y)0≤x+y≤2π,0≤x−y≤2π}, 则
∬Dysin(x+y)dxdy=.\iint\limits_D y \sin(x + y) dxdy = \rule{2cm}{0.7pt}.D∬ysin(x+y)dxdy=.
解
利用二元变量代换, 令 {u=x+y,v=x−y,\begin{cases} u = x + y, \\ v = x - y, \end{cases}{u=x+y,v=x−y, 则 {x=12(u+v),y=12(u−v).\begin{cases} x = \dfrac{1}{2}(u + v), \\ y = \dfrac{1}{2}(u - v). \end{cases}⎩⎨⎧x=21(u+v),y=21(u−v). 因为
J=∣∂x∂u∂x∂v∂y∂u∂y∂v∣=∣121212−12∣=−12,J = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \dfrac{1}{2} & \dfrac{1}{2} \\ \dfrac{1}{2} & -\dfrac{1}{2} \end{vmatrix} = -\dfrac{1}{2}, J=∂u∂x∂u∂y∂v∂x∂v∂y=212121−21=−21,
所以
原式=∣J∣∫0π2∫0π212(u−v)sinududv=14∫0π2dv∫0π2usinudu−14∫0π2vdv∫0π2sinudu=14×π2×1−14×π28×1=π8−π232.\begin{aligned} \text{原式} &= |J| \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \dfrac{1}{2}(u - v) \sin u \, \mathrm{d}u \, \mathrm{d}v \\ &= \dfrac{1}{4} \int_{0}^{\frac{\pi}{2}} \mathrm{d}v \int_{0}^{\frac{\pi}{2}} u \sin u \, \mathrm{d}u - \dfrac{1}{4} \int_{0}^{\frac{\pi}{2}} v \, \mathrm{d}v \int_{0}^{\frac{\pi}{2}} \sin u \, \mathrm{d}u \\ &= \dfrac{1}{4} \times \dfrac{\pi}{2} \times 1 - \dfrac{1}{4} \times \dfrac{\pi^2}{8} \times 1 = \dfrac{\pi}{8} - \dfrac{\pi^2}{32}. \end{aligned} 原式=∣J∣∫02π∫02π21(u−v)sinududv=41∫02πdv∫02πusinudu−41∫02πvdv∫02πsinudu=41×2π×1−41×8π2×1=8π−32π2.
- 设向量 OA→\overrightarrow{OA}OA 与 OB→\overrightarrow{OB}OB 的夹角为 α\alphaα, ∣OA→∣=1|\overrightarrow{OA}| = 1∣OA∣=1, ∣OB→∣=2|\overrightarrow{OB}| = 2∣OB∣=2, OP→=(1−λ)OA→\overrightarrow{OP} = (1 - \lambda) \overrightarrow{OA}OP=(1−λ)OA, OQ→=λOB→\overrightarrow{OQ} = \lambda \overrightarrow{OB}OQ=λOB, 其中 0≤λ≤10 \leq \lambda \leq 10≤λ≤1.
- 问当 λ\lambdaλ 为何值时, ∣PQ→∣|\overrightarrow{PQ}|∣PQ∣ 取得最小值;
- 设 (1) 中的 λ\lambdaλ 满足 0<λ<150 < \lambda < \dfrac{1}{5}0<λ<51, 求夹角 α\alphaα 的取值范围.
解
(1)由余弦定理:
f(λ)=∣PQ→∣2=(1−λ)2+4λ2−4λ(1−λ)cosα=(5+4cosα)λ2−2(1+2cosα)λ+1=(5+4cosα)(λ−1+2cosα5+4cosα)2+1−(1+2cosα)25+4cosα\begin{align*} f(\lambda)&=\vert\overrightarrow{PQ}\vert^2=(1-\lambda)^2+4\lambda^2-4\lambda(1-\lambda)\cos{\alpha}\\ &=(5+4\cos{\alpha})\lambda^2-2(1+2\cos{\alpha})\lambda+1\\ &=(5+4\cos{\alpha})\left(\lambda-\frac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\right)^2+1-\frac{(1+2\cos{\alpha})^2}{5+4\cos{\alpha}} \end{align*} f(λ)=∣PQ∣2=(1−λ)2+4λ2−4λ(1−λ)cosα=(5+4cosα)λ2−2(1+2cosα)λ+1=(5+4cosα)(λ−5+4cosα1+2cosα)2+1−5+4cosα(1+2cosα)2
当0≤1+2cosα5+4cosα≤10\leq \dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\leq 10≤5+4cosα1+2cosα≤1,λ=1+2cosα5+4cosα\lambda=\dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}λ=5+4cosα1+2cosα取最小。
当1+2cosα5+4cosα≤0\dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\leq 05+4cosα1+2cosα≤0,λ=0\lambda=0λ=0取最小。
(2)
解不等式:
0≤1+2cosα5+4cosα≤150\leq\dfrac{1+2\cos{\alpha}}{5+4\cos{\alpha}}\leq \dfrac{1}{5}0≤5+4cosα1+2cosα≤51
得到:
α∈(π2,2π3)\alpha\in\left(\dfrac{\pi}{2},\dfrac{2\pi}{3}\right)α∈(2π,32π)
- 设函数 f(x)f(x)f(x) 在 (−1,1)(-1, 1)(−1,1) 上二阶可导, f(0)=1f(0) = 1f(0)=1, 且当 x≥0x \geq 0x≥0 时, f(x)≥0f(x) \geq 0f(x)≥0, f′(x)≤0f'(x) \leq 0f′(x)≤0, f′′(x)≤f(x)f''(x) \leq f(x)f′′(x)≤f(x). 证明: f′(0)≥−2f'(0) \geq -\sqrt{2}f′(0)≥−2.
解
构造辅助函数 g(x)=[f′(x)]2−[f(x)]2g(x) = [f'(x)]^2 - [f(x)]^2g(x)=[f′(x)]2−[f(x)]2,求导得:
g′(x)=2f′(x)f′′(x)−2f(x)f′(x)=2f′(x)[f′′(x)−f(x)].g'(x) = 2f'(x)f''(x) - 2f(x)f'(x) = 2f'(x)[f''(x) - f(x)]. g′(x)=2f′(x)f′′(x)−2f(x)f′(x)=2f′(x)[f′′(x)−f(x)].
由条件 f′′(x)≤f(x)f''(x) \leq f(x)f′′(x)≤f(x) 及 f′(x)≤0f'(x) \leq 0f′(x)≤0(当 x≥0x \geq 0x≥0时),可知 g′(x)≥0g'(x) \geq 0g′(x)≥0,即 g(x)g(x)g(x) 在 [0,1)[0, 1)[0,1)上单调递增。因此,对任意 x≥0x \geq 0x≥0,有:
g(x)≥g(0)=[f′(0)]2−[f(0)]2=[f′(0)]2−1.g(x) \geq g(0) = [f'(0)]^2 - [f(0)]^2 = [f'(0)]^2 - 1. g(x)≥g(0)=[f′(0)]2−[f(0)]2=[f′(0)]2−1.
另一方面,由 f′(x)≤0f'(x) \leq 0f′(x)≤0 知 f(x)f(x)f(x)在 [0,1)[0, 1)[0,1) 上非增,故f(x)≤f(0)=1f(x) \leq f(0) = 1f(x)≤f(0)=1。结合 f(x)≥0f(x) \geq 0f(x)≥0,得:
[f(x)]2≤1⇒−[f(x)]2≥−1.[f(x)]^2 \leq 1 \quad \Rightarrow \quad -[f(x)]^2 \geq -1. [f(x)]2≤1⇒−[f(x)]2≥−1.
将g(x)=[f′(x)]2−[f(x)]2g(x) = [f'(x)]^2 - [f(x)]^2g(x)=[f′(x)]2−[f(x)]2 代入:
[f′(x)]2−[f(x)]2≥[f′(0)]2−1⇒[f′(x)]2≥[f′(0)]2−1+[f(x)]2.[f'(x)]^2 - [f(x)]^2 \geq [f'(0)]^2 - 1 \quad \Rightarrow \quad [f'(x)]^2 \geq [f'(0)]^2 - 1 + [f(x)]^2. [f′(x)]2−[f(x)]2≥[f′(0)]2−1⇒[f′(x)]2≥[f′(0)]2−1+[f(x)]2.
由于[f(x)]2≥0[f(x)]^2 \geq 0[f(x)]2≥0,故:
[f′(x)]2≥[f′(0)]2−1.[f'(x)]^2 \geq [f'(0)]^2 - 1. [f′(x)]2≥[f′(0)]2−1.
假设f′(0)<−2f'(0) < -\sqrt{2}f′(0)<−2,则 [f′(0)]2>2[f'(0)]^2 > 2[f′(0)]2>2:
[f′(x)]2≥2−1=1⇒f′(x)≤−1(∀x≥0).[f'(x)]^2 \geq 2 - 1 = 1 \quad \Rightarrow \quad f'(x) \leq -1 \quad (\forall x \geq 0). [f′(x)]2≥2−1=1⇒f′(x)≤−1(∀x≥0).
对 f′(x)≤−1f'(x) \leq -1f′(x)≤−1积分:
f(x)−f(0)=∫0xf′(t)dt≤∫0x(−1)dt=−x⇒f(x)≤1−x.f(x) - f(0) = \int_0^x f'(t) \, dt \leq \int_0^x (-1) \, dt = -x \quad \Rightarrow \quad f(x) \leq 1 - x. f(x)−f(0)=∫0xf′(t)dt≤∫0x(−1)dt=−x⇒f(x)≤1−x.
当x→1−x \to 1^-x→1− 时,f(x)→−∞f(x) \to -\inftyf(x)→−∞,与 f(x)≥0f(x) \geq 0f(x)≥0 矛盾。因此,假设不成立,必有 f′(0)≥−2f'(0) \geq -\sqrt{2}f′(0)≥−2。
- 证明: 对任意正整数 nnn, 恒有
∫0π2(sinnxsinx)4dx≤(n24−18)π2.\int_0^{\frac{\pi}{2}} \left( \frac{\sin nx}{\sin x} \right)^4 dx \leq \left( \frac{n^2}{4} - \frac{1}{8} \right) \pi^2.∫02π(sinxsinnx)4dx≤(4n2−81)π2.
解
首先,利用归纳法易证:对 n⩾1n \geqslant 1n⩾1,∣sinnx∣⩽nsinx(0⩽x⩽π2)|\sin nx| \leqslant n\sin x \left(0 \leqslant x \leqslant \frac{\pi}{2}\right)∣sinnx∣⩽nsinx(0⩽x⩽2π)。又由于 ∣sinnx∣⩽1|\sin nx| \leqslant 1∣sinnx∣⩽1 及 sinx⩾2πx(0⩽x⩽π2)\sin x \geqslant \frac{2}{\pi}x \left(0 \leqslant x \leqslant \frac{\pi}{2}\right)sinx⩾π2x(0⩽x⩽2π),所以当 n>1n > 1n>1 时,得
∫0π2x(sinnxsinx)4dx=∫0π2nx(sinnxsinx)4dx+∫π2nπ2x(sinnxsinx)4dx⩽n4∫0π2nxdx+∫π2nπ2x(12xπ)4dx=n42(π2n)2+π416∫π2nπ2dxx3=n2π28+π416⋅1−2x2∣π2nπ2=n2π28−π432(4π2−4n2π2)=(n24−18)π2.\begin{aligned} \int_{0}^{\frac{\pi}{2}} x \left( \frac{\sin nx}{\sin x} \right)^4 dx &= \int_{0}^{\frac{\pi}{2n}} x \left( \frac{\sin nx}{\sin x} \right)^4 dx + \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} x \left( \frac{\sin nx}{\sin x} \right)^4 dx \\ &\leqslant n^4 \int_{0}^{\frac{\pi}{2n}} x dx + \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} x \left( \frac{1}{\frac{2x}{\pi}} \right)^4 dx \\ &= \frac{n^4}{2} \left( \frac{\pi}{2n} \right)^2 + \frac{\pi^4}{16} \int_{\frac{\pi}{2n}}^{\frac{\pi}{2}} \frac{dx}{x^3} \\ &= \frac{n^2 \pi^2}{8} + \frac{\pi^4}{16} \cdot \left. \frac{1}{-2x^2} \right|_{\frac{\pi}{2n}}^{\frac{\pi}{2}} \\ &= \frac{n^2 \pi^2}{8} - \frac{\pi^4}{32} \left( \frac{4}{\pi^2} - \frac{4n^2}{\pi^2} \right) \\ &= \left( \frac{n^2}{4} - \frac{1}{8} \right) \pi^2. \end{aligned} ∫02πx(sinxsinnx)4dx=∫02nπx(sinxsinnx)4dx+∫2nπ2πx(sinxsinnx)4dx⩽n4∫02nπxdx+∫2nπ2πx(π2x1)4dx=2n4(2nπ)2+16π4∫2nπ2πx3dx=8n2π2+16π4⋅−2x212nπ2π=8n2π2−32π4(π24−π24n2)=(4n2−81)π2.
当 n=1n = 1n=1 时,∫0π2xdx=π28\int_{0}^{\frac{\pi}{2}} x dx = \frac{\pi^2}{8}∫02πxdx=8π2,等号成立。
- 设 z=f(x,y)z = f(x, y)z=f(x,y) 是区域 D={(x,y)∣0≤x≤1,0≤y≤1}D = \left\{ (x, y) \left| 0 \leq x \leq 1, 0 \leq y \leq 1 \right. \right\}D={(x,y)∣0≤x≤1,0≤y≤1} 上的可微函数. f(0,0)=0f(0, 0) = 0f(0,0)=0, 且 dz∣(0,0)=3dx+2dy\mathrm{d}z|_{(0,0)} = 3\mathrm{d}x + 2\mathrm{d}ydz∣(0,0)=3dx+2dy, 求极限
limx→0+∫0x2dt∫tt4f(t,u)du1−1−x44\lim\limits_{x \to 0^+} \dfrac{\int_0^{x^2} \mathrm{d}t \int_{\sqrt{t}}^{\sqrt[4]{t}} f(t, u) \mathrm{d}u}{1 - \sqrt[4]{1 - x^4}}x→0+lim1−41−x4∫0x2dt∫t4tf(t,u)du
解
limx→0+∫0x2dt∫tt4f(t,u)du1−1−x44=limx→0+∫0x2dt∫xtf(t,u)du14x4=−limx→0+∫0x2f(t,x)dtx3=−limx→0f(ξ,x)x,0<ξ<x2=limx→03ξ+2x+o(ξ2+x2)x=−2\begin{align*} \lim_{x \to 0^+} \frac{\int_0^{x^2} \mathrm{d}t \int_{\sqrt{t}}^{\sqrt[4]{t}} f(t, u) \mathrm{d}u}{1 - \sqrt[4]{1 - x^4}}&=\lim_{x \to 0^+} \frac{\int_{0}^{x^2}\mathrm{d}t\int_{x}^{\sqrt{t}}f(t,u)\mathrm{d}u}{\frac{1}{4}x^4}\\ &=-\lim_{x \to 0^+} \frac{\int_{0}^{x^2}f(t,x)\mathrm{d}t}{x^3}\\ &=-\lim_{x\rightarrow 0}\frac{f(\xi,x)}{x},\quad 0<\xi<x^2\\ &=\lim_{x\rightarrow 0}\frac{3\xi+2x+o(\sqrt{\xi^2+x^2})}{x}\\ &=-2 \end{align*} x→0+lim1−41−x4∫0x2dt∫t4tf(t,u)du=x→0+lim41x4∫0x2dt∫xtf(t,u)du=−x→0+limx3∫0x2f(t,x)dt=−x→0limxf(ξ,x),0<ξ<x2=x→0limx3ξ+2x+o(ξ2+x2)=−2
- 设正项级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1∑∞an 收敛, 证明: 存在收敛的正项级数 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1∑∞bn, 使得 limn→∞anbn=0\lim\limits_{n \to \infty} \dfrac{a_n}{b_n} = 0n→∞limbnan=0.
解
因正项级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1∑∞an 收敛,故级数 ∑n=1∞an\sum\limits_{n = 1}^{\infty} a_nn=1∑∞an 的余项 Rn>0R_n>0Rn>0 单调减少趋于 000。
令 bn=Rn−Rn+1,n=1,2,⋯b_n=\sqrt{R_n}-\sqrt{R_{n + 1}},n = 1,2,\cdotsbn=Rn−Rn+1,n=1,2,⋯,则 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1∑∞bn 是正项级数,其部分和
∑k=1nbk=∑k=1n(Rk−Rk+1)=R1−Rn+1<R1\sum_{k = 1}^{n} b_k=\sum_{k = 1}^{n}(\sqrt{R_k}-\sqrt{R_{k + 1}})=\sqrt{R_1}-\sqrt{R_{n + 1}}<\sqrt{R_1} k=1∑nbk=k=1∑n(Rk−Rk+1)=R1−Rn+1<R1
有界,因此 ∑n=1∞bn\sum\limits_{n = 1}^{\infty} b_nn=1∑∞bn 收敛,且
limn→∞anbn=limn→∞Rn−Rn+1Rn−Rn+1=limn→∞(Rn+Rn+1)=0\lim_{n \to \infty} \frac{a_n}{b_n}=\lim_{n \to \infty} \frac{R_n - R_{n + 1}}{\sqrt{R_n}-\sqrt{R_{n + 1}}}=\lim_{n \to \infty}(\sqrt{R_n}+\sqrt{R_{n + 1}})=0 n→∞limbnan=n→∞limRn−Rn+1Rn−Rn+1=n→∞lim(Rn+Rn+1)=0