求解偏微分方程的傅里叶积分解
题目
题目 7. 在带状区域 {(x,y):0<x<1, −∞<y<∞} \{(x, y) : 0 < x < 1, \, -\infty < y < \infty\} {(x,y):0<x<1,−∞<y<∞} 中求解
Δu−u=0,\Delta u - u = 0,Δu−u=0,
边界条件为:
ux∣x=0=0,u_x|_{x=0} = 0,ux∣x=0=0,
u∣x=1={cos(y)∣y∣≤π2,0∣y∣≥π2,u|_{x=1} = \begin{cases} \cos(y) & |y| \leq \frac{\pi}{2}, \\ 0 & |y| \geq \frac{\pi}{2}, \end{cases}u∣x=1={cos(y)0∣y∣≤2π,∣y∣≥2π,
且 max∣u∣<∞ \max |u| < \infty max∣u∣<∞。
解应以适当的傅里叶积分形式表示。
解答
考虑偏微分方程 Δu−u=0 \Delta u - u = 0 Δu−u=0,其中 Δu=uxx+uyy \Delta u = u_{xx} + u_{yy} Δu=uxx+uyy,即:
∂2u∂x2+∂2u∂y2−u=0,
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - u = 0,
∂x2∂2u+∂y2∂2u−u=0,
在区域 0<x<1 0 < x < 1 0<x<1,−∞<y<∞ -\infty < y < \infty −∞<y<∞ 内求解,边界条件为:
- ux(0,y)=0 u_x(0, y) = 0 ux(0,y)=0(Neumann 条件),
- u(1,y)=g(y) u(1, y) = g(y) u(1,y)=g(y),其中 g(y)={cos(y)∣y∣≤π/20∣y∣>π/2 g(y) = \begin{cases} \cos(y) & |y| \leq \pi/2 \\ 0 & |y| > \pi/2 \end{cases} g(y)={cos(y)0∣y∣≤π/2∣y∣>π/2(Dirichlet 条件),
- 解有界,即 max∣u∣<∞ \max |u| < \infty max∣u∣<∞.
由于区域在 y y y 方向无限,且边界条件依赖于 y y y,使用傅里叶变换法求解。对变量 y y y 进行傅里叶变换,定义变换:
u^(x,k)=∫−∞∞u(x,y)e−ikydy.
\hat{u}(x, k) = \int_{-\infty}^{\infty} u(x, y) e^{-i k y} dy.
u^(x,k)=∫−∞∞u(x,y)e−ikydy.
方程变换为:
∂2u^∂x2+(ik)2u^−u^=0 ⟹ ∂2u^∂x2−(k2+1)u^=0.
\frac{\partial^2 \hat{u}}{\partial x^2} + (i k)^2 \hat{u} - \hat{u} = 0 \implies \frac{\partial^2 \hat{u}}{\partial x^2} - (k^2 + 1) \hat{u} = 0.
∂x2∂2u^+(ik)2u^−u^=0⟹∂x2∂2u^−(k2+1)u^=0.
令 λ=k2+1 \lambda = \sqrt{k^2 + 1} λ=k2+1(取正根,因为 k2+1>0 k^2 + 1 > 0 k2+1>0),则方程化为:
∂2u^∂x2−λ2u^=0.
\frac{\partial^2 \hat{u}}{\partial x^2} - \lambda^2 \hat{u} = 0.
∂x2∂2u^−λ2u^=0.
其通解为:
u^(x,k)=A(k)eλx+B(k)e−λx.
\hat{u}(x, k) = A(k) e^{\lambda x} + B(k) e^{-\lambda x}.
u^(x,k)=A(k)eλx+B(k)e−λx.
应用边界条件
-
在 x=0 x = 0 x=0 处: ux(0,y)=0 u_x(0, y) = 0 ux(0,y)=0,变换得 ∂u^∂x∣x=0=0 \left. \frac{\partial \hat{u}}{\partial x} \right|_{x=0} = 0 ∂x∂u^∣∣∣∣x=0=0。
计算导数:
∂u^∂x∣x=0=λA(k)−λB(k)=λ(A(k)−B(k))=0. \left. \frac{\partial \hat{u}}{\partial x} \right|_{x=0} = \lambda A(k) - \lambda B(k) = \lambda (A(k) - B(k)) = 0. ∂x∂u^∣∣∣∣x=0=λA(k)−λB(k)=λ(A(k)−B(k))=0.
因 λ>0 \lambda > 0 λ>0,故 A(k)−B(k)=0 A(k) - B(k) = 0 A(k)−B(k)=0,即 A(k)=B(k) A(k) = B(k) A(k)=B(k)。代入通解:
u^(x,k)=A(k)(eλx+e−λx)=2A(k)cosh(λx). \hat{u}(x, k) = A(k) (e^{\lambda x} + e^{-\lambda x}) = 2A(k) \cosh(\lambda x). u^(x,k)=A(k)(eλx+e−λx)=2A(k)cosh(λx).
令 C(k)=2A(k) C(k) = 2A(k) C(k)=2A(k),则:
u^(x,k)=C(k)cosh(λx),λ=k2+1. \hat{u}(x, k) = C(k) \cosh(\lambda x), \quad \lambda = \sqrt{k^2 + 1}. u^(x,k)=C(k)cosh(λx),λ=k2+1. -
在 x=1 x = 1 x=1 处: u(1,y)=g(y) u(1, y) = g(y) u(1,y)=g(y),变换得 u^(1,k)=g^(k) \hat{u}(1, k) = \hat{g}(k) u^(1,k)=g^(k),其中 g^(k) \hat{g}(k) g^(k) 是 g(y) g(y) g(y) 的傅里叶变换。
计算 g^(k) \hat{g}(k) g^(k):
g^(k)=∫−∞∞g(y)e−ikydy=∫−π/2π/2cos(y)e−ikydy. \hat{g}(k) = \int_{-\infty}^{\infty} g(y) e^{-i k y} dy = \int_{-\pi/2}^{\pi/2} \cos(y) e^{-i k y} dy. g^(k)=∫−∞∞g(y)e−ikydy=∫−π/2π/2cos(y)e−ikydy.
利用 cos(y)=eiy+e−iy2 \cos(y) = \frac{e^{i y} + e^{-i y}}{2} cos(y)=2eiy+e−iy:
g^(k)=12∫−π/2π/2(ei(1−k)y+e−i(1+k)y)dy. \hat{g}(k) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \left( e^{i(1-k)y} + e^{-i(1+k)y} \right) dy. g^(k)=21∫−π/2π/2(ei(1−k)y+e−i(1+k)y)dy.
计算两个积分:
∫−π/2π/2ei(1−k)ydy=[ei(1−k)yi(1−k)]−π/2π/2=2sin((1−k)π2)1−k, \int_{-\pi/2}^{\pi/2} e^{i(1-k)y} dy = \left[ \frac{e^{i(1-k)y}}{i(1-k)} \right]_{-\pi/2}^{\pi/2} = \frac{2 \sin\left( \frac{(1-k)\pi}{2} \right)}{1-k}, ∫−π/2π/2ei(1−k)ydy=[i(1−k)ei(1−k)y]−π/2π/2=1−k2sin(2(1−k)π),
∫−π/2π/2e−i(1+k)ydy=[e−i(1+k)y−i(1+k)]−π/2π/2=2sin((1+k)π2)1+k. \int_{-\pi/2}^{\pi/2} e^{-i(1+k)y} dy = \left[ \frac{e^{-i(1+k)y}}{-i(1+k)} \right]_{-\pi/2}^{\pi/2} = \frac{2 \sin\left( \frac{(1+k)\pi}{2} \right)}{1+k}. ∫−π/2π/2e−i(1+k)ydy=[−i(1+k)e−i(1+k)y]−π/2π/2=1+k2sin(2(1+k)π).
代入:
g^(k)=12(2sin((1−k)π2)1−k+2sin((1+k)π2)1+k)=sin((1−k)π2)1−k+sin((1+k)π2)1+k. \hat{g}(k) = \frac{1}{2} \left( \frac{2 \sin\left( \frac{(1-k)\pi}{2} \right)}{1-k} + \frac{2 \sin\left( \frac{(1+k)\pi}{2} \right)}{1+k} \right) = \frac{\sin\left( \frac{(1-k)\pi}{2} \right)}{1-k} + \frac{\sin\left( \frac{(1+k)\pi}{2} \right)}{1+k}. g^(k)=21⎝⎛1−k2sin(2(1−k)π)+1+k2sin(2(1+k)π)⎠⎞=1−ksin(2(1−k)π)+1+ksin(2(1+k)π).
化简三角函数:
sin((1−k)π2)=cos(kπ2),sin((1+k)π2)=cos(kπ2), \sin\left( \frac{(1-k)\pi}{2} \right) = \cos\left( \frac{k\pi}{2} \right), \quad \sin\left( \frac{(1+k)\pi}{2} \right) = \cos\left( \frac{k\pi}{2} \right), sin(2(1−k)π)=cos(2kπ),sin(2(1+k)π)=cos(2kπ),
所以:
g^(k)=cos(kπ2)1−k+cos(kπ2)1+k=cos(kπ2)(11−k+11+k)=cos(kπ2)21−k2. \hat{g}(k) = \frac{\cos\left( \frac{k\pi}{2} \right)}{1-k} + \frac{\cos\left( \frac{k\pi}{2} \right)}{1+k} = \cos\left( \frac{k\pi}{2} \right) \left( \frac{1}{1-k} + \frac{1}{1+k} \right) = \cos\left( \frac{k\pi}{2} \right) \frac{2}{1 - k^2}. g^(k)=1−kcos(2kπ)+1+kcos(2kπ)=cos(2kπ)(1−k1+1+k1)=cos(2kπ)1−k22.
在 k=±1 k = \pm 1 k=±1 时,分子和分母均为零,但极限存在(例如,k=1 k=1 k=1 时,g^(1)=π/2 \hat{g}(1) = \pi/2 g^(1)=π/2),故表达式有效。应用边界条件:
u^(1,k)=C(k)cosh(λ)=g^(k) ⟹ C(k)=g^(k)cosh(λ). \hat{u}(1, k) = C(k) \cosh(\lambda) = \hat{g}(k) \implies C(k) = \frac{\hat{g}(k)}{\cosh(\lambda)}. u^(1,k)=C(k)cosh(λ)=g^(k)⟹C(k)=cosh(λ)g^(k).
代入:
u^(x,k)=g^(k)cosh(λx)cosh(λ),λ=k2+1. \hat{u}(x, k) = \hat{g}(k) \frac{\cosh(\lambda x)}{\cosh(\lambda)}, \quad \lambda = \sqrt{k^2 + 1}. u^(x,k)=g^(k)cosh(λ)cosh(λx),λ=k2+1.
傅里叶逆变换
解 u(x,y) u(x, y) u(x,y) 是 u^(x,k) \hat{u}(x, k) u^(x,k) 的逆变换:
u(x,y)=12π∫−∞∞u^(x,k)eikydk=12π∫−∞∞g^(k)cosh(λx)cosh(λ)eikydk.
u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(x, k) e^{i k y} dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{g}(k) \frac{\cosh(\lambda x)}{\cosh(\lambda)} e^{i k y} dk.
u(x,y)=2π1∫−∞∞u^(x,k)eikydk=2π1∫−∞∞g^(k)cosh(λ)cosh(λx)eikydk.
代入 g^(k)=2cos(πk/2)1−k2 \hat{g}(k) = \frac{2 \cos(\pi k / 2)}{1 - k^2} g^(k)=1−k22cos(πk/2):
u(x,y)=12π∫−∞∞2cos(πk/2)1−k2cosh(k2+1x)cosh(k2+1)eikydk.
u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2 \cos(\pi k / 2)}{1 - k^2} \frac{\cosh(\sqrt{k^2 + 1} x)}{\cosh(\sqrt{k^2 + 1})} e^{i k y} dk.
u(x,y)=2π1∫−∞∞1−k22cos(πk/2)cosh(k2+1)cosh(k2+1x)eikydk.
由于 g(y) g(y) g(y) 是偶函数,g^(k) \hat{g}(k) g^(k) 是偶函数,且 u^(x,k) \hat{u}(x, k) u^(x,k) 是偶函数,解为实值函数,可写为余弦变换形式:
u(x,y)=1π∫0∞u^(x,k)cos(ky)dk.
u(x, y) = \frac{1}{\pi} \int_{0}^{\infty} \hat{u}(x, k) \cos(k y) dk.
u(x,y)=π1∫0∞u^(x,k)cos(ky)dk.
代入:
u(x,y)=1π∫0∞[2cos(πk/2)1−k2cosh(k2+1x)cosh(k2+1)]cos(ky)dk.
u(x, y) = \frac{1}{\pi} \int_{0}^{\infty} \left[ \frac{2 \cos(\pi k / 2)}{1 - k^2} \frac{\cosh(\sqrt{k^2 + 1} x)}{\cosh(\sqrt{k^2 + 1})} \right] \cos(k y) dk.
u(x,y)=π1∫0∞[1−k22cos(πk/2)cosh(k2+1)cosh(k2+1x)]cos(ky)dk.
整理得:
u(x,y)=2π∫0∞cos(πk2)cos(ky)1−k2cosh(xk2+1)cosh(k2+1)dk.
u(x, y) = \frac{2}{\pi} \int_{0}^{\infty} \frac{\cos\left( \frac{\pi k}{2} \right) \cos(k y)}{1 - k^2} \frac{\cosh\left( x \sqrt{k^2 + 1} \right)}{\cosh\left( \sqrt{k^2 + 1} \right)} dk.
u(x,y)=π2∫0∞1−k2cos(2πk)cos(ky)cosh(k2+1)cosh(xk2+1)dk.
有界性验证
- 当 k→∞ k \to \infty k→∞,g^(k)∼2cos(πk/2)−k2=O(k−2) \hat{g}(k) \sim \frac{2 \cos(\pi k / 2)}{-k^2} = O(k^{-2}) g^(k)∼−k22cos(πk/2)=O(k−2),且 cosh(xλ)cosh(λ)∼exλ−λ=e−λ(1−x) \frac{\cosh(x \lambda)}{\cosh(\lambda)} \sim e^{x\lambda - \lambda} = e^{-\lambda(1-x)} cosh(λ)cosh(xλ)∼exλ−λ=e−λ(1−x),其中 λ=k2+1∼∣k∣ \lambda = \sqrt{k^2 + 1} \sim |k| λ=k2+1∼∣k∣,故被积函数指数衰减。
- 在 k=±1 k = \pm 1 k=±1,奇点可去(分子分母同零点)。
- 因此积分收敛,且 max∣u∣<∞ \max |u| < \infty max∣u∣<∞ 满足。
解为:
u(x,y)=2π∫0∞cos(πk2)cos(ky)1−k2cosh(xk2+1)cosh(k2+1)dk
\boxed{u(x,y) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{ \cos\left( \dfrac{\pi k}{2} \right) \cos(k y) }{1 - k^{2}} \dfrac{ \cosh\left( x \sqrt{k^{2} + 1} \right) }{ \cosh\left( \sqrt{k^{2} + 1} \right) } dk}
u(x,y)=π2∫0∞1−k2cos(2πk)cos(ky)cosh(k2+1)cosh(xk2+1)dk