当前位置: 首页 > news >正文

python学opencv|读取图像(五十三)原理探索:使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言

前序学习进程中,已经探索了使用cv.matchTemplate()函数实现最佳图像匹配的技巧,并且成功对两个目标进行了匹配。

相关文章链接为:python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配-CSDN博客

实际上,我们在这篇文章中重点体会了匹配效果,却没有真正剖析代码背后的运行逻辑。今天这篇文章的目标就是对代码背后逻辑稍微追溯一下。

【2】官网教程

【2.1】cv2.matchTemplate()函数

点击下方链接,直达cv2.matchTemplate()函数官网链接:

图1 cv2.matchTemplate()函数官网说明

图1所示的cv2.matchTemplate()函数官网说明中,有三处做了标记,它们彼此交织在一起。需要解读:

a.待匹配的大图像I大小为W X H,使用的模板T像素大小为w x h,获得的匹配效果R对应的的矩阵大小为(W-w+1,H-h+1);

b.使用不同的匹配方法后,再用minMaxLoc函数读取最佳匹配效果对应的左上角坐标时,有时候取最小值,如TM_SQDIFF,有时候取最大值,如TM_CCORR和TM_CCOEFF。

c.解读匹配方法请看第2.2节。

【2.2】cv2.matchTemplate()函数

点击链接,直达函数对匹配方法的解读:OpenCV: Object Detection

在这个页面,会看到不同的函数说明:

图2 匹配方法的数学公式

由图2可见,TM_SQDIFF采用的是减法计算,而TM_CCORR和TM_CCOEFF采用的乘法计算,所以相似度高的时候,TM_SQDIFF方法的计算值往往会接近0,而TM_CCORR和TM_CCOEFF方法就会在因为平方而取得更大的值。

所以“用minMaxLoc函数读取最佳匹配效果对应的左上角坐标时,有时候取最小值,如TM_SQDIFF,有时候取最大值,如TM_CCORR和TM_CCOEFF”就获得了解释。

【3】代码测试

【3.1】代码回顾

首先直接引用前一篇文章的完整代码:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcm = cv.imread('srcm.png') #读取图像srcx.png
srcg = cv.imread('srcg.png') #读取图像srcp.png
srcc = cv.imread('srcc.png') #读取图像srcp.png
rows,cols,cans=srcg.shape #读取图像属性
rowsc,colsc,cansc=srcc.shape #读取图像属性#匹配结果
results=cv.matchTemplate(srcm,srcg,cv.TM_CCORR_NORMED)
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED)#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)#取最大坐标
resultPoint1=maxLoc
print("resultPoint1=",resultPoint1)#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint4=",resultPoint4)#作标记
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('srcg ', srcg)
cv.imshow('srcc ', srcc)
cv.imwrite('srcgc.png',srcm)#窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

待匹配的图像I为:

图3 待匹配图像I:srcm.png

图4 模板T1 srcg.png

图5 模板T2 srcc.png

图6 匹配效果 srcgc.png  

上述代码全部使用了cv2.TM_CCORR_NORMED方法,所以需要调用最大值来代表最佳匹配效果的左上角坐标。

未验证不用方法对应最佳匹配效果的左上角坐标,现在应增加匹配方法。

【3.2】代码扩展

在直接引用前一篇文章的完整代码的基础上,不仅要增加匹配方法,还要显示出匹配结果。

#匹配计算
results=cv.matchTemplate(srcm,srcg,cv.TM_SQDIFF_NORMED) #TM_SQDIFF匹配方法
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED) #TM_CCORR匹配方法
print("result=",results) #输出匹配结果
print("result1=",results1) #输出匹配结果

代码先后使用了TM_SQDIFF和TM_CCORR两种方法,并且要求输出了匹配结果。

然后读取了调用minMaxLoc()函数对结果渠道的各个参数值:

#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)
print("result.minValue=",minValue)
print("result1.minValuec=",minValuec)
print("result.maxValue=",maxValue)
print("result1.maxValuec=",maxValuec)
print("result.minLoc=",minLoc)
print("result1.minLocc=",minLocc)
print("result.maxLoc=",maxLoc)
print("result1.maxLocc=",maxLocc)

然后根据先前的分析思路,取最佳匹配矩阵的左上角坐标。

这时候TM_SQDIFF取最小值,TM_CCORR方法取最大值,之后还要叠加模板的大小,来画出整个匹配区域:

#取最小坐标
resultPoint1=minLoc
print("resultPoint1=",resultPoint1)#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint4=",resultPoint4)

之后为了突出匹配点,以最小和最大坐标Wie圆心,分别绘制半径为10和20的圆形:

#作标记
cv.circle(srcm,(minLoc),10,(255,255,0))
cv.circle(srcm,(maxLoc),20,(255,255,0))
cv.circle(srcm,(minLocc),10,(0,255,255))
cv.circle(srcm,(maxLocc),20,(0,255,255))
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)

然后输出所有图像:

# 显示结果
cv.imshow('srcm ', srcm)
cv.imwrite('srcgcw.png',srcm)
#窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行后,获得的匹配效果为:

图7 匹配效果srcgcw.png

由图7可见,TM_SQDIFF取最小值,TM_CCORR方法取最大值获得的最佳匹配图像实现了预期效果。

【4】细节说明

上述3.2节读取到的部分匹配结果矩阵为:

 图8 匹配结果矩阵

由图8可见,每个矩阵内部给出了很多值,这表明在矩阵内部,图像和模板是按照像素点逐个进行比对匹配。

【5】总结

掌握了python+opencv调用使用cv.matchTemplate()函数实现最佳图像匹配的执行原理和过程。

 

http://www.lryc.cn/news/530120.html

相关文章:

  • win10部署本地deepseek-r1,chatbox,deepseek联网(谷歌网页插件Page Assist)
  • 冯·诺依曼体系结构
  • 本地部署 DeepSeek-R1 模型
  • Mybatis——sql映射文件中的增删查改
  • 【开源免费】基于Vue和SpringBoot的流浪宠物管理系统(附论文)
  • nth_element函数——C++快速选择函数
  • DNS缓存详解(DNS Cache Detailed Explanation)
  • 课设:【ID0022】火车票售票管理系统(前端)
  • Ruby 类和对象
  • Java基础知识总结(三十八)--读取数据
  • 交错定理和切比雪夫节点的联系与区别
  • 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )
  • GitHub Actions定时任务配置完全指南:从Cron语法到实战示例
  • Van-Nav:新年,将自己学习的项目地址统一整理搭建自己的私人导航站,供自己后续查阅使用,做技术的同学应该都有一个自己网站的梦想
  • Easy系列PLC尺寸测量功能块ST代码(激光微距仪应用)
  • Manacher 最长回文子串
  • 51单片机开发:独立键盘实验
  • 组件框架漏洞
  • OFDM系统仿真
  • 基于单片机的盲人智能水杯系统(论文+源码)
  • 安心即美的生活方式
  • 安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】
  • 【cocos creator】【模拟经营】餐厅经营demo
  • 前端 | 深入理解Promise
  • Visual Studio Code修改terminal字体
  • 自然语言处理-词嵌入 (Word Embeddings)
  • 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
  • 【论文笔记】Fast3R:前向并行muti-view重建方法
  • 谈谈你所了解的AR技术吧!
  • upload labs靶场