当前位置: 首页 > news >正文

交错定理和切比雪夫节点的联系与区别

1. 交错定理

交错定理是切比雪夫逼近理论的核心内容,描述在区间[a,b]上,一个函数 f ( x ) f(x) f(x)的最佳一致逼近多项式 P n ( x ) P_n(x) Pn(x)的特性。定理内容如下:
f ( x ) f(x) f(x)是区间[a,b]上的连续函数, P n ( x ) P_n(x) Pn(x) f ( x ) f(x) f(x)的最佳一致逼近多项式(次数不超过 n n n)。那么,误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)Pn(x)在区间[a,b]上满足:
(1)交错性:误差函数 E ( x ) E(x) E(x)在区间[a,b]上至少有 n + 2 n+2 n+2个交错点,即存在 n + 2 n+2 n+2个点 x 0 , x 1 , . . . , x n + 1 x_0,x_1,...,x_{n+1} x0,x1,...,xn+1使得
E ( x i ) = ( − 1 ) i ∣ ∣ E ∣ ∣ ∞ 或 E ( x i ) = ( − 1 ) i + 1 ∣ ∣ E ∣ ∣ ∞ E(x_i)=(-1)^{i}||E||_\infty 或 E(x_i)=(-1)^{i+1}||E||_\infty E(xi)=(1)i∣∣EE(xi)=(1)i+1∣∣E
其中, ∣ ∣ E ∣ ∣ ∞ = m a x x ∈ [ a , b ] ∣ E ( x ) ∣ ||E||_\infty = max_{x\in [a,b]}|E(x)| ∣∣E=maxx[a,b]E(x)是误差的最大值。
(2)极值性:在这些交错点上,误差函数 E ( x ) E(x) E(x)达到其最大值或最小值,且符号交替变化。


2. 切比雪夫节点

切比雪夫节点是用于多项式插值的一种特殊节点选择,能够最小化插值误差的最大值,即最小化 ∣ ∣ f ( x ) − P n ( x ) ∣ ∣ ∞ ||f(x)-P_n(x)||_\infty ∣∣f(x)Pn(x)。在区间[-1,1]上, n + 1 n+1 n+1个切比雪夫节点定义为
x k = c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=cos(2(n+1)(2k+1)π),k=0,1,...,n
对于一般区间[a,b],可以通过线性变换将切比雪夫节点映射到该区间:
x k = a + b 2 + b − a 2 c o s ( ( 2 k + 1 ) π 2 ( n + 1 ) ) , k = 0 , 1 , . . . , n x_k=\frac{a+b}{2}+\frac{b-a}{2}cos(\frac{(2k+1)\pi}{2(n+1)}), k=0,1,...,n xk=2a+b+2bacos(2(n+1)(2k+1)π),k=0,1,...,n
从切比雪夫节点的表达式可以看出,它在[-1,1]上分布不均匀,靠近区间端点的节点更密集,所以使用切比雪夫节点进行插值时,可以显著减少高次插值的震荡现象(龙格现象)。


3. 交错定理和切比雪夫节点对比

(1) 定义不同

  • 交错定理中的点是误差函数 E ( x ) = f ( x ) − P n ( x ) E(x)=f(x)-P_n(x) E(x)=f(x)Pn(x)的极值点;
  • 切比雪夫节点是切比雪夫多项式 T n + 1 ( x ) T_{n+1}(x) Tn+1(x)的极值点。

(2) 依赖对象不同

  • 交错定理中的点依赖于被逼近函数 f ( x ) f(x) f(x)和逼近多项式 P n ( x ) P_n(x) Pn(x)
  • 切比雪夫节点是固定的,仅依赖于区间[a,b]和节点数量 n + 1 n+1 n+1

(3) 应用场景不同

  • 交错定理用于描述最佳一致逼近多项式的特性;
  • 切比雪夫节点用于多项式插值,以最小化插值误差的最大值;

(4) 联系
- 当使用切比雪夫节点进行插值时,插值误差的分布接近交错定理所描述的最佳误差分布;
- 切比雪夫节点可以看做交错定理中最佳逼近的一种实现方式。


4. 有切比雪夫节点还需要交错定理的原因

切比雪夫节点和交错定理虽然在某些方面存在一定联系,但是也有一些明显的差别,在以下场景中仍然需要交错定理:
- 如果目标是找到一个多项式,使得其与目标函数的最大偏差最小(即最佳一致逼近),则需要使用交错定理;
- 切比雪夫节点依赖于在节点处精确匹配函数值,但是在某些问题中,我们可能无法或不需要再特定节点处精确匹配函数值,例如在函数逼近中,我们可能只关心整体误差的最小化,而不关心特定点的匹配。
- 切比雪夫节点虽然能够减小高次插值的震荡现象,但是在高次逼近中,仍然可能存在数值不稳定性,交错定理通过控制误差的分布,可以进一步提高逼近的稳定性和精度;
- 交错定理为逼近问题提供了理论依据,可以用于分析和验证逼近结果的有效性,例如,通过检查误差函数是否满足交错性,可以判断一个多项式是否是最佳一致逼近多项式;

http://www.lryc.cn/news/530109.html

相关文章:

  • 大数据相关职位介绍之三(数据挖掘,数据安全 ,数据合规师,首席数据官,数据科学家 )
  • GitHub Actions定时任务配置完全指南:从Cron语法到实战示例
  • Van-Nav:新年,将自己学习的项目地址统一整理搭建自己的私人导航站,供自己后续查阅使用,做技术的同学应该都有一个自己网站的梦想
  • Easy系列PLC尺寸测量功能块ST代码(激光微距仪应用)
  • Manacher 最长回文子串
  • 51单片机开发:独立键盘实验
  • 组件框架漏洞
  • OFDM系统仿真
  • 基于单片机的盲人智能水杯系统(论文+源码)
  • 安心即美的生活方式
  • 安卓(android)订餐菜单【Android移动开发基础案例教程(第2版)黑马程序员】
  • 【cocos creator】【模拟经营】餐厅经营demo
  • 前端 | 深入理解Promise
  • Visual Studio Code修改terminal字体
  • 自然语言处理-词嵌入 (Word Embeddings)
  • 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
  • 【论文笔记】Fast3R:前向并行muti-view重建方法
  • 谈谈你所了解的AR技术吧!
  • upload labs靶场
  • 搜索引擎友好:设计快速收录的网站架构
  • 基于 oneM2M 标准的空气质量监测系统的互操作性
  • 春晚舞台上的人形机器人:科技与文化的奇妙融合
  • 零基础学习书生.浦语大模型-入门岛
  • Gurobi基础语法之 addConstr, addConstrs, addQConstr, addMQConstr
  • 数据结构---图的遍历
  • Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
  • .Net Web API 访问权限限定
  • 项目架构调整,切换版本并发布到中央仓库
  • 考试知识点位运算
  • matlab快速入门(2)-- 数据处理与可视化