当前位置: 首页 > news >正文

SpringBoot操作spark处理hdfs文件

SpringBoot操作spark处理hdfs文件

  • 在这里插入图片描述

1、导入依赖

  • <!--        spark依赖--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.2</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.2.2</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-mllib --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-mllib_2.12</artifactId><version>3.2.2</version></dependency>
    

2、配置spark信息

  • 建立一个配置文件,配置spark信息
import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;//将文件交于spring管理
@Configuration
public class SparkConfig {//使用yml中的配置@Value("${spark.master}")private String sparkMaster;@Value("${spark.appName}")private String sparkAppName;@Value("${hdfs.user}")private String hdfsUser;@Value("${hdfs.path}")private String hdfsPath;@Beanpublic SparkConf sparkConf() {SparkConf conf = new SparkConf();conf.setMaster(sparkMaster);conf.setAppName(sparkAppName);// 添加HDFS配置conf.set("fs.defaultFS", hdfsPath);conf.set("spark.hadoop.hdfs.user",hdfsUser);return conf;}@Beanpublic SparkSession sparkSession() {return SparkSession.builder().config(sparkConf()).getOrCreate();}
}

3、controller和service

  • controller类

    • import org.springframework.beans.factory.annotation.Autowired;
      import org.springframework.web.bind.annotation.GetMapping;
      import org.springframework.web.bind.annotation.RequestMapping;
      import org.springframework.web.bind.annotation.RestController;
      import xyz.zzj.traffic_main_code.service.SparkService;@RestController
      @RequestMapping("/spark")
      public class SparkController {@Autowiredprivate SparkService sparkService;@GetMapping("/run")public String runSparkJob() {//读取Hadoop HDFS文件String filePath = "hdfs://192.168.44.128:9000/subwayData.csv";sparkService.executeHadoopSparkJob(filePath);return "Spark job executed successfully!";}
      }
      
  • 处理地铁数据的service

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import xyz.zzj.traffic_main_code.service.SparkReadHdfs;import java.io.IOException;
import java.net.URI;
import static org.apache.spark.sql.functions.*;@Service
public class SparkReadHdfsImpl implements SparkReadHdfs {private final SparkSession spark;@Value("${hdfs.user}")private String hdfsUser;@Value("${hdfs.path}")private String hdfsPath;@Autowiredpublic SparkReadHdfsImpl(SparkSession spark) {this.spark = spark;}/*** 读取HDFS上的CSV文件并上传到HDFS* @param filePath*/@Overridepublic void sparkSubway(String filePath) {try {// 设置Hadoop配置JavaSparkContext jsc = JavaSparkContext.fromSparkContext(spark.sparkContext());Configuration hadoopConf = jsc.hadoopConfiguration();hadoopConf.set("fs.defaultFS", hdfsPath);hadoopConf.set("hadoop.user.name", hdfsUser);// 读取HDFS上的文件Dataset<Row> df = spark.read().option("header", "true") // 指定第一行是列名.option("inferSchema", "true") // 自动推断列的数据类型.csv(filePath);// 显示DataFrame的所有数据
//            df.show(Integer.MAX_VALUE, false);// 对DataFrame进行清洗和转换操作// 检查缺失值df.select("number", "people", "dateTime").na().drop().show();// 对数据进行类型转换Dataset<Row> df2 = df.select(col("number").cast(DataTypes.IntegerType),col("people").cast(DataTypes.IntegerType),to_date(col("dateTime"), "yyyy年MM月dd日").alias("dateTime"));// 去重Dataset<Row> df3 = df2.dropDuplicates();// 数据过滤,确保people列没有负数Dataset<Row> df4 = df3.filter(col("people").geq(0));
//            df4.show();// 数据聚合,按dateTime分组,统计每天的总客流量Dataset<Row> df6 = df4.groupBy("dateTime").agg(sum("people").alias("total_people"));
//            df6.show();sparkForSubway(df6,"/time_subwayData.csv");//数据聚合,获取每天人数最多的地铁numberDataset<Row> df7 = df4.groupBy("dateTime").agg(max("people").alias("max_people"));sparkForSubway(df7,"/everyday_max_subwayData.csv");//数据聚合,计算每天的客流强度:每天总people除以632840Dataset<Row> df8 = df4.groupBy("dateTime").agg(sum("people").divide(632.84).alias("strength"));sparkForSubway(df8,"/everyday_strength_subwayData.csv");} catch (Exception e) {e.printStackTrace();}}private static void sparkForSubway(Dataset<Row> df6, String hdfsPath) throws IOException {// 保存处理后的数据到HDFSdf6.coalesce(1).write().mode("overwrite").option("header", "true").csv("hdfs://192.168.44.128:9000/time_subwayData");// 创建Hadoop配置Configuration conf = new Configuration();// 获取FileSystem实例FileSystem fs = FileSystem.get(URI.create("hdfs://192.168.44.128:9000"), conf);// 定义临时目录和目标文件路径Path tempDir = new Path("/time_subwayData");FileStatus[] files = fs.listStatus(tempDir);// 检查目标文件是否存在,如果存在则删除Path targetFile1 = new Path(hdfsPath);if (fs.exists(targetFile1)) {fs.delete(targetFile1, true); // true 表示递归删除}for (FileStatus file : files) {if (file.isFile() && file.getPath().getName().startsWith("part-")) {Path targetFile = new Path(hdfsPath);fs.rename(file.getPath(), targetFile);}}// 删除临时目录fs.delete(tempDir, true);}}

4、运行

  • 项目运行完后,打开浏览器
    • spark处理地铁数据
      • http://localhost:8686/spark/dispose
  • 观察spark和hdfs
    • http://192.168.44.128:8099/
    • http://192.168.44.128:9870/explorer.html#/
      • image-20250109095551610
http://www.lryc.cn/news/517919.html

相关文章:

  • 消息队列架构、选型、专有名词解释
  • 用OpenCV实现UVC视频分屏
  • Allure 集成 pytest
  • 【Python】构建智能语音助手:使用Python实现语音识别与合成的全面指南
  • 在 Arthas 中调用 Spring Bean 方法
  • Nginx入门笔记
  • 【单片机】实现一个简单的ADC滤波器
  • 开源 vGPU 方案 HAMi 解析
  • 备考蓝桥杯:顺序表详解(静态顺序表,vector用法)
  • OA系统如何做好DDOS防护
  • 使用 Python 的 pyttsx3 库进行文本转语音
  • 如何在Windows上编译OpenCV4.7.0
  • 【玩转全栈】----Django连接MySQL
  • 25/1/4 算法笔记<强化学习> 生成对抗模仿学习
  • Flink维表方案选型
  • Oracle Database 23ai 新特性: UPDATE 和 DELETE 语句的直接联接
  • 机器学习之随机森林算法实现和特征重要性排名可视化
  • 网络安全图谱以及溯源算法
  • 单片机-外部中断
  • 《解锁计算机视觉智慧:编程实现图片场景文字描述的开源宝藏》
  • onLoad 生命周期函数是否执行取决于跳转的方式和小程序的页面栈管理机制
  • Visio 画阀门 符号 : 电动阀的画法
  • OOM排查思路
  • 《Spring Framework实战》10:4.1.4.2.详细的依赖和配置
  • 网络安全-XSS跨站脚本攻击(基础篇)
  • Git的学习和常见问题
  • Flink源码解析之:Flink on k8s 客户端提交任务源码分析
  • STLG_02_02_MS SQL - SSMS的安装和使用
  • git 常用命令和本地合并解决冲突
  • ThinkPHP 8高效构建Web应用-获取请求对象