当前位置: 首页 > news >正文

机器学习之随机森林算法实现和特征重要性排名可视化

随机森林算法实现和特征重要性排名可视化

目录

  • 随机森林算法实现和特征重要性排名可视化
    • 1 随机森林算法
      • 1.1 概念
      • 1.2 主要特点
      • 1.3 优缺点
      • 1.4 步骤
      • 1.5 函数及参数
        • 1.5.1 函数导入
        • 1.5.2 参数
      • 1.6 特征重要性排名
    • 2 实际代码测试

1 随机森林算法


1.1 概念

是一种基于树模型的集成学习方法,它通过在训练过程中构建多棵决策树,并对这些树的预测结果进行投票或平均,从而提高预测的准确性和稳定性。

1.2 主要特点

  1. 集成学习:随机森林通过组合多棵决策树来提高预测性能。每棵树都是一个弱学习器,随机森林将这些弱学习器集成为一个强学习器。
  2. 随机性:在构建每棵树时,随机森林采用了两种随机性:
    • 样本随机性:从原始数据集中随机有放回地抽取一定比例的样本(通常为全部样本的约63.2%)来训练每棵树。
    • 特征随机性:在每棵树的节点分裂时,从所有特征中随机选择一部分特征进行考虑。
  3. 抗过拟合:由于随机森林在构建每棵树时引入了随机性,使得模型具有很好的抗过拟合能力。
  4. 泛化能力:随机森林在很多问题上都有很好的表现,适用于分类和回归任务。
  5. 特征重要性评估:随机森林可以提供特征重要性的评估,有助于理解数据特征对模型预测的影响。

1.3 优缺点

  • 优点
    • 准确率高,抗噪声能力强
    • 能处理高维度数据
    • 易实现并行化计算
  • 缺点
    • 对时间、空间有一定要求

1.4 步骤

  1. 从原始数据集中随机有放回地抽取N个样本。
  2. 在每个节点分裂时,从所有特征中随机选择k个特征,然后选择最优的特征和分裂点。
  3. 重复步骤1和步骤2,直到达到预设的树的数量或深度。
  4. 对于分类问题,采用多数投票法来确定最终类别;对于回归问题,采用平均值来确定最终预测值。

1.5 函数及参数

1.5.1 函数导入

from sklearn.ensemble import RandomForestClassifier

1.5.2 参数
  1. n_estimators: 决策树的数量,默认为100。增加数量可以提高性能,但也会使训练时间增加。
  2. criterion: 衡量分裂质量的函数。默认是“gini”用于基尼不纯度,另一个选项是“entropy”用于信息增益。
  3. max_depth: 树的最大深度。如果为None,则节点会扩展直到所有叶子都是纯的或者直到所有叶子包含小于min_samples_split个样本。限制树深度可以防止过拟合。
  4. min_samples_split: 内部节点再划分所需的最小样本数,默认为2。
  5. min_samples_leaf: 叶子节点最少样本数,默认为1。
  6. min_weight_fraction_leaf: 叶子节点最小的权重分数,默认为0,即不考虑权重。
  7. max_features: 寻找最佳分割时要考虑的特征数量。可以是特征数量的整数,或者小数表示的百分比,或者“auto”(特征数量的平方根),“sqrt”,“log2”。
  8. max_leaf_nodes: 以最优的方式使用最大叶子节点数来增长树。如果为None,则叶子节点数量不受限制。
  9. bootstrap: 是否在构建树时使用放回抽样,默认为True。
  10. oob_score: 是否使用袋外样本来估计泛化精度,默认为False。
  11. n_jobs: 并行运行工作的数量。如果为-1,则使用所有处理器。
  12. random_state: 控制构建树时随机性的种子(用于 reproducibility)。
  13. verbose: 控制树构建过程的冗余度。
  14. warm_start: 当设置为True时,重用之前的解决方案以适应新数据,并在增加新的树时保留现有的树。
  15. class_weight: 用于标定不同类别的权重,可以是一个字典或者“balanced”,默认为None。

这些参数中,n_estimators, max_depth, min_samples_split, min_samples_leaf, 和 max_features 是最常调整的超参数,以优化随机森林模型的表现。在使用随机森林时,通常需要通过交叉验证来选择这些参数的最佳值。

1.6 特征重要性排名

  • RandomForestClassifier().feature_importances_,返回值为ndarray数组
    在这里插入图片描述

2 实际代码测试

数据:

在这里插入图片描述

可以看到各个率都很高
代码展示:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from pylab import mpl
from sklearn.preprocessing import StandardScalerdata = pd.read_csv('creditcard.csv')
a = data[['Amount']]
b = data['Amount']
# z标准化处理Amount,再存Amount中
scaler = StandardScaler()
data['Amount'] = scaler.fit_transform(data[['Amount']])
# 删除time列
data = data.drop(['Time'],axis=1)
# 特征数据x,删除class列
x = data.drop(['Class'],axis=1)
# class为标签结果列
y = data.Classrfc = RandomForestClassifier(n_estimators=120,max_features=0.8,random_state=314,n_jobs=-1)
x_tr,x_te,y_tr,y_te = \train_test_split(x, y, test_size=0.2,random_state=314)
np.random.seed(seed=4)
# 随机种子
x_tr['Class'] = y_tr
data_tr = x_tr
pt_eg = data_tr[data_tr['Class'] == 0]
ng_eg = data_tr[data_tr['Class'] == 1]
pt_eg = pt_eg.sample(len(ng_eg))
data_c = pd.concat([pt_eg,ng_eg])
x_data_c = data_c.drop(['Class'],axis=1)
y_data_c = data_c['Class']
rfc.fit(x_data_c,y_data_c)
x_tr_pr = rfc.predict(x_data_c)
print(metrics.classification_report(y_data_c ,x_tr_pr))
x_te_pr = rfc.predict(x_te)
print(metrics.classification_report(y_te,x_te_pr))
# 排名
importances = rfc.feature_importances_
im = pd.DataFrame(importances,columns=['importances'])
clos = data.columns
clos_1 = clos.values
clos_2 = clos_1.tolist()
clos = clos_2[0:-1]
im['clos'] = clos
im = im.sort_values(by=['importances'],ascending=False)[:10]
# 中文
mpl.rcParams["font.sans-serif"] = ['Microsoft YaHei']
mpl.rcParams['axes.unicode_minus'] = False
index = range(len(im))
plt.yticks(index,im.clos)
plt.barh(index,im["importances"])
plt.show()

运行结果:
在这里插入图片描述

在这里插入图片描述

http://www.lryc.cn/news/517902.html

相关文章:

  • 网络安全图谱以及溯源算法
  • 单片机-外部中断
  • 《解锁计算机视觉智慧:编程实现图片场景文字描述的开源宝藏》
  • onLoad 生命周期函数是否执行取决于跳转的方式和小程序的页面栈管理机制
  • Visio 画阀门 符号 : 电动阀的画法
  • OOM排查思路
  • 《Spring Framework实战》10:4.1.4.2.详细的依赖和配置
  • 网络安全-XSS跨站脚本攻击(基础篇)
  • Git的学习和常见问题
  • Flink源码解析之:Flink on k8s 客户端提交任务源码分析
  • STLG_02_02_MS SQL - SSMS的安装和使用
  • git 常用命令和本地合并解决冲突
  • ThinkPHP 8高效构建Web应用-获取请求对象
  • 机器人技术:ModbusTCP转CCLINKIE网关应用
  • C语言的语法
  • ElasticsearchJavaClient工具类分析
  • Docker-文章目录
  • docker安装codeserver 运行vite项目(linux)
  • Electron快速入门——跨平台桌面端应用开发框架
  • Delphi+SQL Server实现的(GUI)户籍管理系统
  • 【JavaEE进阶】获取Cookie/Session
  • 在macOS上安装Flutter和环境配置
  • 【电子通识】PWM驱动让有刷直流电机恒流工作
  • Maven在不同操作系统上如何安装?
  • maven如何从外部导包
  • 如何在 Hive SQL 中处理复杂的数据类型?
  • 数据结构:DisjointSet
  • 中国省级产业结构高级化及合理化数据测算(2000-2023年)
  • Nginx不使用域名如何配置证书
  • Perturbed-Attention Guidance(PAG) 笔记