当前位置: 首页 > news >正文

Flannel和Calico之对比(Comparison between Flannel and Calico)

K8S网络插件(CNI):Flannel和Calico详细对比

Flannel和Calico是Kubernetes中最常用的两种CNI(Container Network Interface)插件,各自针对不同的网络需求提供解决方案。以下是对这两种插件的详细讲解,包括它们的原理、架构、优缺点及使用场景。

1. Flannel

Flannel是一个专注于提供简单容器网络的CNI插件,旨在满足Kubernetes集群中基础网络通信需求。

1.1 Flannel的架构

Flannel的架构比较简单,包含以下关键组件:

1.1.1 flanneld(Flannel Daemon)

运行在每个Kubernetes节点上。

核心功能:

  • 子网分配:从集群网络池中为每个节点分配一个子网。

  • 路由配置:确保节点之间可以通信。

  • 网络封装:根据配置的后端类型对跨节点的数据包进行封装和解封装。

1.1.2 Etcd(或Kubernetes API)

用于存储集群网络配置和子网分配信息。Flannel读取和写入节点的网络配置。

1.2 Flannel的网络模式

Flannel提供多种后端模式来实现网络连接,每种模式适用于不同的环境和需求。

1.2.1 VXLAN模式(默认)

原理:

  • 在L3层上通过VXLAN隧道封装数据包。

  • 每个数据包被封装进一个新的UDP数据包,在两个节点之间通过UDP协议传输。

特点:

  • 无需依赖底层网络支持,适应性广。

  • 封装带来了一定的性能开销。

适用场景:底层网络不支持直接路由、希望快速部署网络。

1.2.2 Host-GW模式

原理:

  • 基于主机的路由表,在L3层上通过静态路由实现节点间的通信。

  • 每个节点直接将数据包路由到目标节点,无需封装。

特点:

  • 性能更高,因为没有封装开销。

  • 要求节点处于同一物理或逻辑网络(如VLAN)。

适用场景:节点可以直接通信的裸机或私有云环境。

1.2.3 UDP模式

原理:通过UDP隧道传输数据包。特点:实现简单,但性能较差,已不推荐使用。

1.2.4 IPIP模式

原理:使用IP-in-IP封装技术,数据包在L3层上通过IP包封装传输。

特点:

  • 类似于VXLAN,但性能稍低。

  • 提供比Host-GW更广泛的兼容性。

1.3 Flannel网络流量流程

同节点Pod间通信

  1. Pod A 发送数据到 Pod B。

  2. 数据包通过Pod A的veth接口到达宿主节点。

  3. 数据包经由节点的虚拟网桥(如cbr0)到达Pod B。

跨节点Pod通信(VXLAN模式)

  1. Pod A 发送数据到目标Pod(在另一节点上)。

  2. 数据包经过veth接口到达宿主节点。

  3. flanneld对数据包进行VXLAN封装。

  4. 封装后的数据包通过底层网络传输到目标节点。

  5. 目标节点的flanneld解封装数据包,并将其路由到目标Pod。

1.4 Flannel优缺点

优点:

  • 简单易用:安装配置方便,适合初学者。

  • 轻量级:对系统资源占用较低。

  • 兼容性强:支持多种网络环境和后端模式。

缺点:

  • 功能单一:不支持网络策略和安全控制。

  • 性能不足:在大规模集群或高流量环境下可能会成为瓶颈。

  • 缺少可观测性:对网络性能和流量的监控较少。

2. Calico

Calico是一个功能强大的CNI插件,不仅提供高性能的网络通信,还支持网络策略、负载均衡和安全控制。

2.1 Calico的架构

Calico的架构比Flannel更复杂,包含以下核心组件:

2.1.1 Calico Node

每个节点运行的核心代理。

包含以下子组件:

  • Felix:负责将网络策略应用到Linux内核网络栈。

  • BIRD(BGP Daemon):通过BGP协议分发路由信息。

2.1.2 Datastore

存储Calico的网络和策略配置。

支持多种存储后端:

  • Etcd

  • Kubernetes API(推荐)

2.2 Calico的网络模式

2.2.1 Direct Routing模式(无隧道模式)

原理:

  • 使用BGP将每个节点的Pod CIDR通告给其他节点。

  • 节点间直接路由通信,无需封装。

特点:

  • 高性能,无封装开销。

  • 需要底层网络支持BGP协议。

适用场景:高性能要求、底层网络支持BGP的大型集群。

2.2.2 IPIP模式

原理:在L3层上通过IP-in-IP封装数据包。

特点:

  • 适用于底层网络不支持BGP的情况。

  • 性能略低于Direct Routing。

适用场景:混合环境,部分节点不支持BGP。

2.2.3 VXLAN模式

原理:类似于Flannel的VXLAN模式,通过UDP隧道封装数据包。

特点:

  • 兼容性广泛,适应不同网络环境。

  • 支持对网络进行加密。

2.3 Calico的网络策略

Calico提供了强大的网络策略功能,可以通过声明性配置控制流量的入站和出站行为。

2.3.1 NetworkPolicy

作用范围:针对某个命名空间中的Pod。

功能:控制Pod之间或Pod与外部的通信。

2.3.2 GlobalNetworkPolicy

作用范围:集群全局。

功能:对所有命名空间生效,用于跨命名空间的安全策略。

2.3.3 示例策略配置

允许来自特定命名空间的通信:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:name: allow-namespace
spec:podSelector: {}ingress:- from:- namespaceSelector:matchLabels:role: frontend

限制Pod的出站访问:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:name: deny-egress
spec:podSelector:matchLabels:app: backendpolicyTypes:- Egressegress: []

2.4 Calico的工作流程

同节点Pod通信(Direct Routing模式

  1. Pod A 发送数据到 Pod B(同一节点)。

  2. 数据包通过veth接口进入宿主机。

  3. Felix配置的路由规则直接将数据包路由到Pod B。

跨节点Pod通信(Direct Routing模式)

  1. Pod A 发送数据到目标Pod(另一节点)。

  2. 数据包到达宿主机,BGP通告的路由规则将数据包直接发送到目标节点。

  3. 目标节点将数据包路由到目标Pod。

2.5 Calico优缺点

优点:

  • 高性能:Direct Routing模式避免了封装开销。

  • 网络策略控制:支持复杂的安全策略,提供强大的流量控制能力。

  • 灵活性:支持多种模式,适配不同的网络需求。

  • 可观测性:提供丰富的监控工具。

缺点:

  • 复杂性高:安装和管理需要一定经验。

  • 资源开销:比Flannel更高的CPU和内存使用。

3. Flannel 和 Calico 对比

特性FlannelCalico
主要功能提供基础L3网络提供L3网络 + 网络策略和安全控制
网络模式VXLAN、Host-GW、UDP、IPIPDirect Routing、IPIP、VXLAN
性能中等高性能(Direct Routing模式)
网络策略不支持支持
复杂度
资源开销较高
适用场景简单网络需求大规模集群,高性能和安全需求

4. 选择指南

使用Flannel:

  • 适合中小型集群。

  • 只需要基本的Pod间通信。

  • 部署环境资源有限。

使用Calico:

  • 适合大规模集群。

  • 需要高性能的跨节点通信。

  • 需要对网络流量进行严格控制。1. Flannel

  • Flannel是一个专注于提供简单容器网络的CNI插件,旨在满足Kubernetes集群中基础网络通信需求。

http://www.lryc.cn/news/512374.html

相关文章:

  • Spring Boot + Redisson 封装分布式锁
  • QWEN2 模型架构配置;GGUF的概念:实现量化存储
  • window如何将powershell以管理员身份添加到右键菜单?(按住Shift键显示)
  • spring中使用@Validated,什么是JSR 303数据校验,spring boot中怎么使用数据校验
  • 实际部署Dify可能遇到的问题:忘记密码、开启HTTPS、知识库文档上传的大小限制和数量限制
  • mugen
  • CannotRetrieveUpdates alert in disconnected OCP 4 cluster解决
  • 计算机网络 (16)数字链路层的几个共同问题
  • 细说STM32F407单片机通过IIC读写EEPROM 24C02
  • 【AimRT】现代机器人通信中间件 AimRT
  • Unity 读Excel,读取xlsx文件解决方案
  • R基于贝叶斯加法回归树BART、MCMC的DLNM分布滞后非线性模型分析母婴PM2.5暴露与出生体重数据及GAM模型对比、关键窗口识别
  • 【信息系统项目管理师】高分论文:论信息系统项目的沟通管理(信息管理服务一体化平台)
  • 物联网工厂可视化监控平台:为智能制造打造的可视化大屏
  • 3、redis的高可用
  • 数据结构--顺序表(详解)
  • Day62 图论part11
  • git clone 超时
  • WPF编程excel表格操作
  • Day10补代码随想录 理论基础|232.用栈实现队列|225.用队列实现栈|20.有效的括号|1047.删除字符串中的所有相邻重复项
  • 【Devops】什么是Devops?(Development+Operations)和运维的区别?
  • 基于NodeMCU的物联网电灯控制系统设计
  • Linux驱动开发 IIC I2C驱动 编写APP访问EEPROM AT24C02
  • Linux应用软件编程-多任务处理(线程)
  • VITUREMEIG | AR眼镜 算力增程
  • Jenkins管理多版本python环境
  • Flutter富文本实现学习
  • 如何解决 OpenAI API 连接问题:降级 urllib3 版本
  • 【C语言】库函数常见的陷阱与缺陷(三):内存分配函数[4]--free
  • 论文分享 | PromptFuzz:用于模糊测试驱动程序生成的提示模糊测试