当前位置: 首页 > news >正文

分布式系统架构:限流设计模式

1.为什么要限流?

任何一个系统的运算、存储、网络资源都不是无限的,当系统资源不足以支撑外部超过预期的突发流量时,就应该要有取舍,建立面对超额流量自我保护的机制,而这个机制就是微服务中常说的“限流”

2.四种限流设计模式

说到限流,大家直接的想法就是Sentinel,但是Sentinel限流的原理可能很多人没去深入理解,或者限流到底是怎么做的?具体如何进行限流,业界内也有一些常见设计模式。

2.1流量计数器模式

流量计数器是一种最简单的限流方式,通过记录固定时间窗口内的请求次数来判断是否达到限流阈值。如果请求次数超过限制值,则拒绝后续请求。

实现方式:

  • 将时间划分为固定的时间窗口(如 1 秒、1 分钟)。

  • 每个窗口维护一个计数器,记录当前时间窗口内的请求次数。

  • 如果计数器值超过限流阈值,直接拒绝请求;否则增加计数器。

固定窗口边界问题:

  • 在窗口边界的两端,可能存在短时间内超量请求的“临界问题

比如场景设定:一秒内的TPS大于80时,就限流。

存在问题:即使每一秒的统计流量都没有超过 80 TPS,也不能说明系统没有遇到过大于 80 TPS 的流量压力。比如说系统在连续2秒内都收到60TPS的请求,但是请求发生的时间分别在第1秒的后0.5秒,以及第2秒的前0.5秒。这样系统实际曾在1秒内发生超过80 TPS的请求。

  • 即使连续若干秒统计流量超过阈值,也不能说明流量压力一定超过系统承受能力

假设 10 秒的时间片段中,前 3 秒的 TPS 平均值到了 100,而后 7 秒的平均值是 30 左右,此时系统是否能够处理完这些请求而不产生超时失败?答案是可以的

存在缺陷:造成上面2个问题得原因是流量计数器模式是对时间点进行离散的统计

2.2滑动窗口模式

概念:时间轴上,一个固定大小的窗口随时间平滑滚动。任何时刻,静态地通过窗口内观察到的信息,都等价于一段长度与窗口大小相等的信息。主要是通过记录多个较小时间窗口(子窗口)的请求次数,实现更精细化的限流控制

假设:准备观察的时间片段为 10 秒,以 1 秒作为统计精度,那可以得到一个长度为 10 的数组。设定限流阈值是最近 10 秒内收到的请求不超过 500 个,那么就需要统计10个子数组的请求总数,是否超过阈值。

优点

  • 解决了固定窗口边界问题

缺点

  • 只适用于否决式限流,超过阈值的流量就必须失败

2.3漏桶模式

漏桶可以简单的理解:小学水池应用题,一个水池,每秒以 X 升速度注水,同时又以 Y 升速度出水,问水池啥时候装满。

概念:将请求视为流入漏桶的水,漏桶以固定速率“漏水”。当请求流量超过漏桶的处理能力时,多余的请求会被丢弃或排队。其核心思想是平滑请求流量

实现方式

  1. 维护一个队列(或计数器),用来模拟漏桶。

  2. 新请求到来时,将请求放入桶中。

  3. 按固定速率处理桶中的请求。

  4. 如果桶已满,则拒绝新请求。

缺点:

  • 比较难确定桶的大小和水流出的速度

2.4令牌桶算法

和漏桶一样是基于缓冲区的限流算法,简单理解就是去银行办事时在排队机号取号的场景。

概念:通过固定速率向桶中添加令牌,请求到来时需要先消耗令牌才能被处理。如果桶中没有足够的令牌,请求会被拒绝。与漏桶算法不同,令牌桶允许一定的突发流量

实现方式

  1. 维护一个桶,桶中存储令牌。

  2. 按固定速率(比如限流是1秒100次请求,那么间隔10ms时间放入令牌)向桶中添加令牌,直到桶满为止。

  3. 请求到来时从桶中取出令牌,如果没有令牌就马上失败或者进入降级逻辑。

实际开发的时候,不需要专门做放令牌到桶里这件事,只需要在获取令牌前,比较一下时间戳与当前时间,就能算出需要放入多少令牌,下面是示例代码:

private long lastTime = System.currentTimeMillis();
private int tokens = 0; // 当前令牌数
private static final int LIMIT = 100; // 桶容量
private static final int REFILL_RATE = 10; // 令牌添加速率(令牌/秒)public synchronized boolean tryAcquire() {long now = System.currentTimeMillis();// 添加令牌tokens = Math.min(LIMIT, tokens + (int) ((now - lastTime) / 1000) * REFILL_RATE);lastTime = now;if (tokens > 0) {tokens--;return true;}return false;
}

3.分布式限流

上面介绍的4种限流算法都只适用于单机限流,或者把系统当做整体来限流。实际应用中仍然需要精细的每个服务的限流。

概念:过将限流逻辑分散到多个节点,同时使用一致性算法保证全局限流的一致性。它结合了本地限流和集中式限流的优点。

实现方式

  • 基于 Redis + Lua 脚本使用 Redis 脚本实现分布式限流,在 Redis 中存储全局的请求计数器

  • 基于一致性算法使用分布式一致性算法(如 Raft、Paxos)维护全局流量状态

  • 分布式网关通过 API 网关(如 Kong、Nginx、Spring Cloud Gateway)实现流量的统一调度和限流。

缺点

  • 实现复杂度高,且网络通信和一致性操作带来额外延迟。当流量大时,限流本身会降低系统处理能力

总结

今天学习了4种限流设计模式:流量计数器模式、滑动窗口模式、漏桶模式、令牌桶模式,后面2种都是基于缓冲区的限流算法。简单了解了下分布式限流的概念。限流本身是有代价的,实际开发中需要权衡方案的代价和收益。后续有时间补充Sentinel的限流原理和其中用了哪些设计模式。

文章转载自:卷福同学

原文链接:https://www.cnblogs.com/dnboy/p/18621955

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

http://www.lryc.cn/news/508441.html

相关文章:

  • G口带宽服务器与1G独享带宽服务器:深度剖析其差异
  • Flamingo:少样本多模态大模型
  • 推荐一款免费且好用的 国产 NAS 系统 ——FnOS
  • 2025系统架构师(一考就过):案例题之一:嵌入式架构、大数据架构、ISA
  • 开机存活脚本
  • 车载网关性能 --- GW ECU报文(message)处理机制的技术解析
  • CosyVoice安装过程详解
  • 传统网络架构与SDN架构对比
  • 如何打造用户友好的维护页面:6个创意提升WordPress网站体验
  • 【hackmyvm】Zday靶机wp
  • redis使用注意哪些事项
  • 步进电机位置速度双环控制实现
  • 优化程序中的数据:从数组到代数
  • 【电商搜索】CRM: 具有可控条件的检索模型
  • 使用 ffmpeg 拼接合并视频文件
  • 【信号滤波 (上)】傅里叶变换和滤波算法去除ADC采样中的噪声(Matlab/C++)
  • Idea内,光标显示问题
  • 回顾 python3中字符串
  • 代码随想录day23 | leetcode 39.组合总和 40.组合总和II 131.分割回文串
  • 全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
  • R机器学习:决策树算法的理解与实操
  • 解锁高效学习之道:从认知升级到实践突破
  • 2024年12月CCF-GESP编程能力等级认证Python编程三级真题解析
  • .NET Core 中使用 C# 获取Windows 和 Linux 环境兼容路径合并
  • 【SH】Ubuntu Server 24服务器搭建MySQL数据库研发笔记
  • 编译原理复习---正则表达式+有穷自动机
  • 知识图谱+RAG学习
  • 消息队列技术的发展历史
  • 每天40分玩转Django:Django部署
  • 搭建Elastic search群集