当前位置: 首页 > news >正文

2411C++,C++26反射示例

参考

namespace __impl {template<auto... vals>struct replicator_type {template<typename F>constexpr void operator>>(F body) const {(body.template operator()<vals>(), ...);}};template<auto... vals>replicator_type<vals...> replicator = {};
}
template<typename R>
consteval auto expand(R range) {std::vector<std::meta::info> args;for (auto r : range) {args.push_back(reflect_value(r));}return substitute(^__impl::replicator, args);
}

用法:

 //用`扩展`语句
template <typename E>requires std::is_enum_v<E>
constexpr std::string enum_to_string(E value) {template for (constexpr auto e : std::meta::enumerators_of(^E)) {if (value == [:e:]) {return std::string(std::meta::identifier_of(e));}}return "<unnamed>";
}//使用`扩展`解决方法
template<typename E>requires std::is_enum_v<E>
constexpr std::string enum_to_string(E value) {std::string result = "<unnamed>";[:expand(std::meta::enumerators_of(^E)):] >> [&]<auto e>{if (value == [:e:]) {result = std::meta::identifier_of(e);}};return result;
}

示例

3.1来回

第一例并不引人注目,而是要展示如何在反射域和语法域来回切换:

constexpr auto r = ^int;
typename[:r:] x = 42;       //等价于:`int x=42;`
typename[:^char:] c = '*';  //等价于:`charc='*';`

在与依赖全名相同环境中,即,在标准叫做仅类型的环境中,可省略型名前缀.如:

using MyType = [:sizeof(int)<sizeof(long)? ^long : ^int:];  //隐式`"型名"`前缀.

3.2选择成员

第二个示例允许为特定类型"按序号"选择成员:

struct S { unsigned i:2, j:6; };
consteval auto member_number(int n) {if (n == 0) return ^S::i;else if (n == 1) return ^S::j;
}
int main() {S s{0, 0};s.[:member_number(1):] = 42;  //等价于:`s.j=42;`s.[:member_number(5):] = 0;   //错误`(member_number(5))`不是一个常数.
}

此例还说明了可以访问字段.

注意,像s.[:member_number(1):]此"访问成员拼接"是比传统语法更直接的访问成员机制.它不涉及查找成员名,检查访问,或如果拼接反射值表示成员函数解析重载.

该提案包括许多常值"元函数",可用它们内省各种语言结构.这些元函数包括,描述给定类型非静态成员返回一个反射值向量std::meta::nonstatic_data_members_of.
因此,可重写上例为:

struct S { unsigned i:2, j:6; };
consteval auto member_number(int n) {return std::meta::nonstatic_data_members_of(^S)[n];
}
int main() {S s{0, 0};s.[:member_number(1):] = 42;  //等价于:`s.j=42;`s.[:member_number(5):] = 0;   //错误`(member_number(5))`不是一个常数.
}

此提案指定std::meta名字空间与(std::meta::info)反射类型关联;因此,在上例中可省略std::meta::限定.

另一个经常有用元函数是返回一个,描述声明给定反射值表示的实例的std::string_view标识的std::meta::identifier_of.

有了此工具,可按"串"访问非静态数据成员:

struct S { unsigned i:2, j:6; };
consteval auto member_named(std::string_view name) {for (std::meta::info field : nonstatic_data_members_of(^S)) {if (has_identifier(field) && identifier_of(field) == name)return field;}
}
int main() {S s{0, 0};s.[:member_named("j"):] = 42;  //等价于:`s.j=42;`s.[:member_named("x"):] = 0;   //错误`(member_named("x")`不是一个常数.
}

3.3类型列表到大小列表

在此,大小是一个用{sizeof(int),sizeof(float),sizeof(double)}初化的std::array<std::size_t,3>:

constexpr std::array types = {^int, ^float, ^double};
constexpr std::array sizes = []{std::array<std::size_t, types.size()> r;std::views::transform(types, r.begin(), std::meta::size_of);return r;
}();

比较此方法与以下基于类型生成相同数组大小的方法:

template<class...> struct list {};
using types = list<int, float, double>;
constexpr auto sizes = []<template<class...> class L, class... T>(L<T...>) {return std::array<std::size_t, sizeof...(T)>{{ sizeof(T)... }};
}(types{});

3.4实现make_integer_sequence

与使用平凡模板元编程手动方法相比,尽管今天的标准库依赖内部函数,可提供更好make_integer_sequence实现:

#include <utility>
#include <vector>
template<typename T>
consteval std::meta::info make_integer_seq_refl(T N) {std::vector args{^T};for (T k = 0; k < N; ++k) {args.push_back(std::meta::reflect_value(k));}return substitute(^std::integer_sequence, args);
}
template<typename T, T N>using make_integer_sequence = [:make_integer_seq_refl<T>(N):];

注意,替换模板过程中隐式缓存仍适用.因此,多次使用make_integer_sequence<int,20>计算只涉及一次make_integer_seq_refl<int>(20).

3.5取类布局

struct member_descriptor
{std::size_t offset;std::size_t size;
};
//返回`std::array<member_descriptor,N>`
template <typename S>
consteval auto get_layout() {constexpr auto members = nonstatic_data_members_of(^S);std::array<member_descriptor, members.size()> layout;for (int i = 0; i < members.size(); ++i) {layout[i] = {.offset=offset_of(members[i]).bytes, .size=size_of(members[i])};}return layout;
}
struct X
{char a;int b;double c;
};
/*`常式`*/ auto Xd = get_layout<X>();/*其中`Xd`将是`std::array<member_descriptor,3>{{{0,1},{4,4},{8,8}}}`*/

3.6枚举转串

最常见工具之一按串转换枚举值,此例依赖扩展语句:

template <typename E>requires std::is_enum_v<E>
constexpr std::string enum_to_string(E value) {template for (constexpr auto e : std::meta::enumerators_of(^E)) {if (value == [:e:]) {return std::string(std::meta::identifier_of(e));}}return "<unnamed>";
}
enum Color { red, green, blue };
static_assert(enum_to_string(Color::red) == "red");
static_assert(enum_to_string(Color(42)) == "<unnamed>");

也可反向:

template <typename E>requires std::is_enum_v<E>
constexpr std::optional<E> string_to_enum(std::string_view name) {template for (constexpr auto e : std::meta::enumerators_of(^E)) {if (name == std::meta::identifier_of(e)) {return [:e:];}}return std::nullopt;
}

但是不必使用扩展语句,也可用算法.如,enum_to_string也可这样实现,此例依赖非瞬态常式分配,这也演示了根据枚举器个数选择不同算法:

template <typename E>requires std::is_enum_v<E>
constexpr std::string enum_to_string(E value) {constexpr auto get_pairs = []{return std::meta::enumerators_of(^E)| std::views::transform([](std::meta::info e){return std::pair<E, std::string>(std::meta::extract<E>(e), std::meta::identifier_of(e));})};constexpr auto get_name = [](E value) -> std::optional<std::string> {if constexpr (enumerators_of(^E).size() <= 7) {//如果枚举器不多,请使用`find_if()`的向量constexpr auto enumerators = get_pairs() | std::ranges::to<std::vector>();auto it = std::ranges::find_if(enumerators, [value](auto const& pr){return pr.first == value;};if (it == enumerators.end()) {return std::nullopt;} else {return it->second;}} else {//如果有很多枚举器,请使用`find()`的`映射`constexpr auto enumerators = get_pairs() | std::ranges::to<std::map>();auto it = enumerators.find(value);if (it == enumerators.end()) {return std::nullopt;} else {return it->second;}}};return get_name(value).value_or("<unnamed>");
}

在编译时,可根据enumerators_of长度选择更复杂查找算法(^E)

可生成紧凑双向持久数据结构,以最小的消费空间同时支持enum_to_stringstring_to_enum等.

3.7解析命令行选项

下一例展示了命令行选项解析器,如何根据成员名自动推导标志来工作.真正的命令行解析器当然会更复杂,这仅是个开始.

template<typename Opts>
auto parse_options(std::span<std::string_view const> args) -> Opts {Opts opts;template for (constexpr auto dm : nonstatic_data_members_of(^Opts)) {auto it = std::ranges::find_if(args,[](std::string_view arg){return arg.starts_with("--") && arg.substr(2) == identifier_of(dm);});if (it == args.end()) {//未提供选项,请使用`默认`continue;} else if (it + 1 == args.end()) {std::print(stderr, "Option {} is missing a value\n", *it);std::exit(EXIT_FAILURE);}using T = typename[:type_of(dm):];auto iss = std::ispanstream(it[1]);if (iss >> opts.[:dm:]; !iss) {std::print(stderr, "Failed to parse option {} into a {}\n", *it, display_string_of(^T));std::exit(EXIT_FAILURE);}}return opts;
}
struct MyOpts {std::string file_name = "input.txt";  //`"-file_name<string>"`选项int    count = 1;                     //`"-count<int>"`选项
};
int main(int argc, char *argv[]) {MyOpts opts = parse_options<MyOpts>(std::vector<std::string_view>(argv+1, argv+argc));
}

3.8简单元组类型

#include <meta>
template<typename... Ts> struct Tuple {struct storage;static_assert(is_type(define_class(^storage, {data_member_spec(^Ts)...})));storage data;Tuple(): data{} {}Tuple(Ts const& ...vs): data{ vs... } {}
};
template<typename... Ts>struct std::tuple_size<Tuple<Ts...>>: public integral_constant<size_t, sizeof...(Ts)> {};
template<std::size_t I, typename... Ts>struct std::tuple_element<I, Tuple<Ts...>> {static constexpr std::array types = {^Ts...};using type = [: types[I] :];};
consteval std::meta::info get_nth_field(std::meta::info r, std::size_t n) {return nonstatic_data_members_of(r)[n];
}
template<std::size_t I, typename... Ts>constexpr auto get(Tuple<Ts...> &t) noexcept -> std::tuple_element_t<I, Tuple<Ts...>>& {return t.data.[:get_nth_field(^decltype(t.data), I):];}
//其他值类一样...

此例使用"神奇"的std::meta::define_class模板及nonstatic_data_members_of,元函数成员反射实现类似std::tuple类型,无需在这些工具不可用时,涉及一般复杂且贵模板元编程技巧.

define_class反射不完整的类或联,加上非静态数据成员描述的向量,并完成给定类或联类型以取得所描述的成员.

3.9简单变量类型

类似如何对每个带一个成员Ts...,使用define_class实现一个元组动态创建一个类型,可实现一个只定义一个而不是结构的变量.

这里的区别当前如何定义联的析构器:

union U1 {int i;char c;
};
union U2 {int i;std::string s;
};

U1有个平凡析构器,但按已删除(因为std::string有个非平凡析构器)定义U2析构器.
但是,为了define_class,这里实际上只有一个合理的待选选项:

template <class... Ts>
union U {//所有成员Ts... members;//如果所有类型都是简单的可析构,则默认析构器constexpr ~U() requires (std::is_trivially_destructible_v<Ts> && ...) = default;//...否则,析构器闲着constexpr ~U() { }
};

如果让define_class该行为,则就可用比当前实现更直接的方式,实现一个变量.这不是std::variant完整实现,但可说明该想法:

template <typename... Ts>
class Variant {union Storage;struct Empty { };static_assert(is_type(define_class(^Storage, {data_member_spec(^Empty, {.name="empty"}),data_member_spec(^Ts)...})));static consteval std::meta::info get_nth_field(std::size_t n) {return nonstatic_data_members_of(^Storage)[n+1];}Storage storage_;int index_ = -1;//欺骗:使用`libstdc++`的实现template <typename T>static constexpr size_t accepted_index = std::__detail::__variant::__accepted_index<T, std::variant<Ts...>>;template <class F>constexpr auto with_index(F&& f) const -> decltype(auto) {return mp_with_index<sizeof...(Ts)>(index_, (F&&)f);}
public:constexpr Variant() requires std::is_default_constructible_v<Ts...[0]>//这应该有效吗:`storage_{.[:get_nth_field(0):]{}}`: storage_{.empty={}}, index_(0){std::construct_at(&storage_.[: get_nth_field(0) :]);}constexpr ~Variant() requires (std::is_trivially_destructible_v<Ts> and ...) = default;constexpr ~Variant() {if (index_ != -1) {with_index([&](auto I){std::destroy_at(&storage_.[: get_nth_field(I) :]);});}}template <typename T, size_t I = accepted_index<T&&>>requires (!std::is_base_of_v<Variant, std::decay_t<T>>)constexpr Variant(T&& t): storage_{.empty={}}, index_(-1){std::construct_at(&storage_.[: get_nth_field(I) :], (T&&)t);index_ = (int)I;}//在`P2963`前,你实际上无法很好地表达此约束constexpr Variant(Variant const&) requires (std::is_trivially_copyable_v<Ts> and ...) = default;constexpr Variant(Variant const& rhs)requires ((std::is_copy_constructible_v<Ts> and ...)and not (std::is_trivially_copyable_v<Ts> and ...)): storage_{.empty={}}, index_(-1){rhs.with_index([&](auto I){constexpr auto field = get_nth_field(I);std::construct_at(&storage_.[: field :], rhs.storage_.[: field :]);index_ = I;});}constexpr auto index() const -> int { return index_; }template <class F>constexpr auto visit(F&& f) const -> decltype(auto) {if (index_ == -1) {throw std::bad_variant_access();}return mp_with_index<sizeof...(Ts)>(index_, [&](auto I) -> decltype(auto) {return std::invoke((F&&)f,  storage_.[: get_nth_field(I) :]);});}
};

实际上,如下Variant<T,U>组成了一个存储联类型:

union Storage {Empty empty;T unnamed0;U unnamed1;~Storage() requires std::is_trivially_destructible_v<T> && std::is_trivially_destructible_v<U> = default;~Storage() { }
}

这里问题是,是否应该可如下用胶接器直接初化已定义联的成员:

: storage{.[: get_nth_field(0) :]={}}

可以说,答案应该是肯定的,此应与其他访问的工作方式一致.

3.10 结构到数组的结构

#include <meta>
#include <array>
template <typename T, std::size_t N>
struct struct_of_arrays_impl;
consteval auto make_struct_of_arrays(std::meta::info type, std::meta::info N) -> std::meta::info {std::vector<std::meta::info> old_members = nonstatic_data_members_of(type);std::vector<std::meta::info> new_members = {};for (std::meta::info member : old_members) {auto type_array = substitute(^std::array, {type_of(member), N });auto mem_descr = data_member_spec(type_array, {.name = identifier_of(member)});new_members.push_back(mem_descr);}return std::meta::define_class( substitute(^struct_of_arrays_impl, {type, N}), new_members);
}
template <typename T, size_t N>
using struct_of_arrays = [: make_struct_of_arrays(^T, ^N) :];
Example:
struct point {float x;float y;float z;
};
using points = struct_of_arrays<point, 30>;
//等价于:`构 点{std::array<float,30>x;std::array<float,30>y;std::array<float,30>z;};`

同样,可很好利用nonstatic_data_members_ofdefine_class的组合.

3.11解析命令行选项II

现在已看到了几个使用std::meta::define_class创建类型的示例,可创建一个更复杂命令行解析器示例.

这是clap的开场示例(Rust命令行参数解析器):

struct Args : Clap {Option<std::string, {.use_short=true, .use_long=true}> name;Option<int, {.use_short=true, .use_long=true}> count = 1;
};
int main(int argc, char** argv) {auto opts = Args{}.parse(argc, argv);for (int i = 0; i < opts.count; ++i) {  //`opts.count`的类型为`int`,std::print("Hello {}!", opts.name);   //`opts.name`的类型为`std::string`}
}

可以像这样实现:

struct Flags {bool use_short;bool use_long;
};
template <typename T, Flags flags>
struct Option {std::optional<T> initializer = {};//一些适合`标志`的构造器和访问器
};//按`恰好`是`适当成员`的`类型`,转换`私有类型`(其所有非静态数据成员都是`选项`的).如,如果`类型`是上面介绍的`参数`的反射,则`该函`数的计算结果将是类型的反射:`struct{std::string name;int count;}`consteval auto spec_to_opts(std::meta::info opts, std::meta::info spec) -> std::meta::info {std::vector<std::meta::info> new_members;for (std::meta::info member : nonstatic_data_members_of(spec)) {auto type_new = template_arguments_of(type_of(member))[0];new_members.push_back(data_member_spec(type_new, {.name=identifier_of(member)}));}return define_class(opts, new_members);
}
struct Clap {template <typename Spec>auto parse(this Spec const& spec, int argc, char** argv) {std::vector<std::string_view> cmdline(argv+1, argv+argc)//检查`命令行`是否包含`-help`等.struct Opts;static_assert(is_type(spec_to_opts(^Opts, ^Spec)));Opts opts;template for (constexpr auto [sm, om] : std::views::zip(nonstatic_data_members_of(^Spec), nonstatic_data_members_of(^Opts))) {auto const& cur = spec.[:sm:];constexpr auto type = type_of(om);//找到与`此选项`关联的参数auto it = std::ranges::find_if(cmdline,[&](std::string_view arg){return (cur.use_short && arg.size() == 2 && arg[0] == '-' && arg[1] == identifier_of(sm)[0])|| (cur.use_long && arg.starts_with("--") && arg.substr(2) == identifier_of(sm));});//无此参数if (it == cmdline.end()) {if constexpr (has_template_arguments(type) and template_of(type) == ^std::optional) {//`类型`是可选的,因此参数也是continue;} else if (cur.initializer) {//该类型不是可选的,但提供了初化器,请使用该opts.[:om:] = *cur.initializer;continue;} else {std::print(stderr, "Missing required option {}\n", display_string_of(sm));std::exit(EXIT_FAILURE);}} else if (it + 1 == cmdline.end()) {std::print(stderr, "Option {} for {} is missing a value\n", *it, display_string_of(sm));std::exit(EXIT_FAILURE);}//找到的参数,试解析它auto iss = ispanstream(it[1]);if (iss >> opts.[:om:]; !iss) {std::print(stderr, "Failed to parse {:?} into option {} of type {}\n",it[1], display_string_of(sm), display_string_of(type));std::exit(EXIT_FAILURE);}}return opts;}
};

3.12一个通用的格式化器

struct universal_formatter {constexpr auto parse(auto& ctx) { return ctx.begin(); }template <typename T>auto format(T const& t, auto& ctx) const {auto out = std::format_to(ctx.out(), "{}{{", has_identifier(^T) ? identifier_of(^T) : "(unnamedtype)";);auto delim = [first=true]() mutable {if (!first) {*out++ = ',';*out++ = ' ';}first = false;};template for (constexpr auto base : bases_of(^T)) {delim();out = std::format_to(out, "{}", (typename [: type_of(base) :] const&)(t));}template for (constexpr auto mem : nonstatic_data_members_of(^T)) {delim();std::string_view mem_label = has_identifier(mem) ? identifier_of(mem) : "(unnamedmember)";out = std::format_to(out, ".{}={}", mem_label, t.[:mem:]);}*out++ = '}';return out;}
};
struct B { int m0 = 0; };
struct X { int m1 = 1; };
struct Y { int m2 = 2; };
class Z : public X, private Y { int m3 = 3; int m4 = 4; };
template <> struct std::formatter<B> : universal_formatter { };
template <> struct std::formatter<X> : universal_formatter { };
template <> struct std::formatter<Y> : universal_formatter { };
template <> struct std::formatter<Z> : universal_formatter { };
int main() {std::println("{}", Z());//`Z{X{B{.m0=0},.m1=1},Y{{.m0=0},.m2=2},.m3=3,.m4=4}`
}

注意,当前不能用t.[:base:]语法访问基类子对象,即只能使用转换取基类:

static_cast<[: type_of(base) const& :]>(t), or
(typename [: type_of(base) :] const&)t

两者都必须在转换显式指定类型的常性.static_cast还必须检查权限.

3.13实现成员级hash_append

template <typename H, typename T> requires std::is_standard_layout_v<T>
void hash_append(H& algo, T const& t) {template for (constexpr auto mem : nonstatic_data_members_of(^T)) {hash_append(algo, t.[:mem:]);}
}

3.14按元组转换结构

template <typename T>
constexpr auto struct_to_tuple(T const& t) {constexpr auto members = nonstatic_data_members_of(^T);constexpr auto indices = []{std::array<int, members.size()> indices;std::ranges::iota(indices, 0);return indices;}();constexpr auto [...Is] = indices;return std::make_tuple(t.[: members[Is] :]...);
}

或:

consteval auto type_struct_to_tuple(info type) -> info {return substitute(^std::tuple,nonstatic_data_members_of(type)| std::views::transform(std::meta::type_of)| std::views::transform(std::meta::type_remove_cvref)| std::ranges::to<std::vector>());
}
template <typename To, typename From, std::meta::info ... members>
constexpr auto struct_to_tuple_helper(From const& from) -> To {return To(from.[:members:]...);
}
template<typename From>
consteval auto get_struct_to_tuple_helper() {using To = [: type_struct_to_tuple(^From): ];std::vector args = {^To, ^From};for (auto mem : nonstatic_data_members_of(^From)) {args.push_back(reflect_value(mem));}/*或,使用区间:args.append_range(nonstatic_data_members_of(^From)| std::views::transform(std::meta::reflect_value));*/return extract<To(*)(From const&)>(substitute(^struct_to_tuple_helper, args));
}
template <typename From>
constexpr auto struct_to_tuple(From const& from) {return get_struct_to_tuple_helper<From>()(from);
}

在此,type_struct_to_tuple带类似struct{T t;U const &u;V v;},并返回std::tuple<T,U,V>反射类型.这给了类型.

然后,struct_to_tuple_helper实际转换函数模板,可按非类型模板参数包来实现成员的所有反射.

这是个常式函数,而不是常值函数,因为一般,转换是运行时操作.

但是,确定需要struct_to_tuple_helper实例是个编译时操作,且必须使用常值函数处理(因为该函数调用nonstatic_data_members_of),因此需要单独的get_struct_to_tuple_helper()函数模板.

替代所有内容放在一起,创建需要的struct_to_tuple_helper的实例化,并用提取取得该实例编译时引用.

因此可简单调用f是指向struct_to_tuple_helper正确私有的函数引用.

3.15实现tuple_cat

template<std::pair<std::size_t, std::size_t>... indices>
struct Indexer {template<typename Tuples>//可用元组索引而不是元组的元组auto operator()(Tuples&& tuples) const {using ResultType = std::tuple<std::tuple_element_t<indices.second,std::remove_cvref_t<std::tuple_element_t<indices.first, std::remove_cvref_t<Tuples>>>>...>;return ResultType(std::get<indices.second>(std::get<indices.first>(std::forward<Tuples>(tuples)))...);}
};
template <class T>
consteval auto subst_by_value(std::meta::info tmpl, std::vector<T> args)-> std::meta::info
{std::vector<std::meta::info> a2;for (T x : args) {a2.push_back(std::meta::reflect_value(x));}return substitute(tmpl, a2);
}
consteval auto make_indexer(std::vector<std::size_t> sizes)-> std::meta::info
{std::vector<std::pair<int, int>> args;for (std::size_t tidx = 0; tidx < sizes.size(); ++tidx) {for (std::size_t eidx = 0; eidx < sizes[tidx]; ++eidx) {args.push_back({tidx, eidx});}}return subst_by_value(^Indexer, args);
}
template<typename... Tuples>
auto my_tuple_cat(Tuples&&... tuples) {constexpr typename [: make_indexer({type_tuple_size(type_remove_cvref(^Tuples))...}) :] indexer;return indexer(std::forward_as_tuple(std::forward<Tuples>(tuples)...));
}

3.16命名元组

实现命名元组的难点,实际上是按非类型模板参数对待串.因为不能只传递"x"auto V形式的非类型模板参数,所以有两个方法来指定组成部分:

可引入类型,这样就可以写make_named_tuple<pair<int,"x">,pair<double,"y">>()
一直反射,这样就可以写:

make_named_tuple<^int, std::meta::reflect_value("x"), ^double, std::meta::reflect_value("y")>()

当前不支持拼接串字面,且给定合适的fixed_string类型,方法遵守define_class已显示的类似模式:

template <class T, fixed_string Name>
struct pair {static constexpr auto name() -> std::string_view { return Name.view(); }using type = T;
};
template <class... Tags>
consteval auto make_named_tuple(std::meta::info type, Tags... tags) {std::vector<std::meta::info> nsdms;auto f = [&]<class Tag>(Tag tag){nsdms.push_back(data_member_spec(dealias(^typename Tag::type),{.name=Tag::name()}));};(f(tags), ...);return define_class(type, nsdms);
}
struct R;
static_assert(is_type(make_named_tuple(^R, pair<int, "x">{}, pair<double, "y">{})));
static_assert(type_of(nonstatic_data_members_of(^R)[0]) == ^int);
static_assert(type_of(nonstatic_data_members_of(^R)[1]) == ^double);
int main() {[[maybe_unused]] auto r = R{.x=1, .y=2.0};
}

或,可在域中保存所有内容,来避免非类型模板参数的问题:

consteval auto make_named_tuple(std::meta::info type, std::initializer_list<std::pair<std::meta::info, std::string_view>> members) {std::vector<std::meta::data_member_spec> nsdms;for (auto [type, name] : members) {nsdms.push_back(data_member_spec(type, {.name=name}));}return define_class(type, nsdms);
}
struct R;
static_assert(is_type(make_named_tuple(^R, {{^int, "x"}, {^double, "y"}})));
static_assert(type_of(nonstatic_data_members_of(^R)[0]) == ^int);
static_assert(type_of(nonstatic_data_members_of(^R)[1]) == ^double);
int main() {[[maybe_unused]] auto r = R{.x=1, .y=2.0};
}

3.17编译时票据计数器

此处建议的特征使得在编译时更新票证计数器更容易.这不是理想的实现(更喜欢直接支持编译时,即常值,变量),但它展示了编译时如何搞出可变状态.

class TU_Ticket {template<int N> struct Helper;
public:static consteval int next() {int k = 0;//搜索下个不完整`'Helper<k>"`.std::meta::info r;while (is_complete_type(r = substitute(^Helper, { std::meta::reflect_value(k) })))++k;//定义`'Helper<k>'`并返回其索引.define_class(r, {});return k;}
};
constexpr int x = TU_Ticket::next();
static_assert(x == 0);
constexpr int y = TU_Ticket::next();
static_assert(y == 1);
constexpr int z = TU_Ticket::next();
static_assert(z == 2);

3.18模拟反射类型

尽管认为单个不透明的std::meta::info类型是最好的,且对反射最具可扩展性,但承认SG7表达了对未来支持"类型反射"的愿望.

下面演示了一种由不同类型表示不同类的反射组装类型反射库的可能方法,及此处建议的工具.

//表示判定限制的`'std::meta::info'`.
template <std::meta::info Pred>requires (std::predicate<[:type_of(Pred):], std::meta::info>)
struct metatype {std::meta::info value;//除非满足`判定`,否则`构造`的格式是错误的.consteval metatype(std::meta::info r) : value(r) {if (![:Pred:](r))throw "Reflection is not a member of this metatype";}//转为`'std::meta::info'`允许拼接此类型的值.consteval operator std::meta::info() const { return value; }static consteval bool check(std::meta::info r) { return [:Pred:](r); }
};//表示"匹配失败"已知元类型的类型.
struct unmatched {consteval unmatched(std::meta::info) {}static consteval bool check(std::meta::info) { return true; }
};
//用`更具描述性的类型`,返回给定`"更富有"`反射.
template <typename... Choices>
consteval std::meta::info enrich(std::meta::info r) {//因为控制类型,所以知道第一个构造器是取`信息`的构造器.在}处添加了复制/移动构造器,因此是列表中的最后构造器.  std::array ctors = {*(members_of(^Choices) | std::views::filter(std::meta::is_constructor)).begin()...,*(members_of(^unmatched) | std::views::filter(std::meta::is_constructor)).begin()};std::array checks = {^Choices::check..., ^unmatched::check};for (auto [check, ctor] : std::views::zip(checks, ctors))if (extract<bool>(reflect_invoke(check, {reflect_value(r)})))return reflect_invoke(ctor, {reflect_value(r)});std::unreachable();
}

利用此机制,根据按参数提供的反射"类型"来选择不同重载函数.

using type_t = metatype<^std::meta::is_type>;
using template_t = metatype<^std::meta::is_template>;
//对不同反射"类型",重载函数的示例.
void PrintKind(type_t) { std::println("type"); }
void PrintKind(template_t) { std::println("template"); }
void PrintKind(unmatched) { std::println("unknown kind"); }
int main() {//按以下值之一分类反射:`Type,Function`或`Unmatched`.auto enrich = [](std::meta::info r) { return ::enrich<type_t, template_t>(r); };//演示如何使用`'变富'`来选择重载.PrintKind([:enrich(^metatype):]);                   //`"template"`PrintKind([:enrich(^type_t):]);                     //`"type"`PrintKind([:enrich(std::meta::reflect_value(3):]);  //`"unknownkind"`
}

注意,可按包装字面类型的,或包装可能不同类型多个值泛化元型类.
如,这可用来根据以下因子选择编译时重载:两个整数是否共享相同奇偶校验,可选中是否有值,变量(variant)任意(any)持有的值的类型,或编译时串的语法形式.

C++23中以相同泛型实现相同目标,需要两次拼写参数:第一次取得模板参数的"分类标签",然后再次调用函数,即

Printer::PrintKind<classify(^int)>(^int).
//或更糟......
fn<classify(Arg1, Arg2, Arg3)>(Arg1, Arg2, Arg3).
http://www.lryc.cn/news/483223.html

相关文章:

  • Ubuntu上搭建Flink Standalone集群
  • C语言 精选真题2
  • Netty篇(WebSocket)
  • 云原生-docker安装与基础操作
  • MySQL数据库:SQL语言入门 【上】(学习笔记)
  • 重学 Android 自定义 View 系列(六):环形进度条
  • nodejs 020: React语法规则 props和state
  • STM32问题集
  • SwiftUI(十二)- 容器组件 布局与结构的基石
  • 想租用显卡训练自己的网络?AutoDL保姆级使用教程(PyCharm版)
  • LeetCode【0039】组合总和
  • AscendC从入门到精通系列(一)初步感知AscendC
  • PostgreSQL中的COPY命令:高效数据导入与导出
  • 【HAL库】STM32F105VCTx多通道ADC+DMA方式的【STM32CubeMX】配置及代码实现
  • [SaaS] 数禾科技 AIGC生成营销素材
  • vue3中查找字典列表中某个元素的值对应的列表索引值
  • 爱普生机器人EPSON RC
  • Linux探秘坊-------1.系统核心的低语:基础指令的奥秘解析(1)
  • ❤React-JSX语法认识和使用
  • 51单片机应用开发(进阶)---定时器应用(电子时钟)
  • JavaScript中的对象-栈内存和堆内存以及this指向的两种情况(后续会出进阶)
  • shell脚本使用curl上传FTP
  • 【漏洞分析】Fastjson最新版本RCE漏洞
  • 【项目开发 | 跨域认证】JSON Web Token(JWT)
  • 杨中科 .Net Core 笔记 DI 依赖注入2
  • 微信版产品目录如何制作?
  • 使用HTML、CSS和JavaScript创建动态圣诞树
  • 机器学习-35-提取时间序列信号的特征
  • 【软件测试】设计测试用例的万能公式
  • 【MySQL 保姆级教学】事务的自动提交和手动提交(重点)--上(13)