【小白学机器学习30】样本统计的核心参数:均值/期望,方差,标准差,标准值。
目录
1 为什么我们要搞出来这么多指标/参数?
1.1 描述统计学为啥要搞出来这么多复杂的参数?什么平均值等
1.2 所以,需要用少数几个关键数据代表1群数据
1.2.1 平均值
1.2.2 平均值的问题:方差
2 代表性的数据1:均值
2.1 平均数
2.2 其他平均数
2.3 期望值= 以概率为权重的 加权平均值
3 其他描述平均值的
3.1 中位数
3.2 四分之一分位数,1/4分位数
3.3 众数
4 描述分散程度的指标:方差,标准差
4.1 方差var
4.1.1 方差公式
4.1.2 方差公式的由来,为什么是这个平方和的公式?
4.1.3 方差的核心
4.1.4 方差的问题
4.2 标准差 SD
5 标准值和概率
5.1 标准值
5.2 有了标准值,才有标准正态分布和 标准化参数
5.3 标准值和概率
6 样本和总体的关系
6.1 两组指标/参数
6.2 我们的目的,是通过样本认识总体
6.3 我们怎么从 样本的参数 获得总体的参数?
6.3.1 总体均值和样本均值,多次抽样时
6.3.2 总体均值和样本均值,只有单个样本时
6.3.3 总体方差和样本方差,无论单次还是多次
6.3.4 为什么要多一个“均方差”概念,没有“均均值”呢?
6.3.5 均方差的延申概念
7 上面的逻辑漏洞
7.1 有问题的地方
7.2 勉强说的过去的解释
7.3 但是更常见的情况下,我们怎么办? 用T分布?
1 为什么我们要搞出来这么多指标/参数?
1.1 描述统计学为啥要搞出来这么多复杂的参数?什么平均值等
数据本身很多了,但是我们的大脑进行数据处理时却不是越多越好,所以我们需要寻转典型数据,数据的代表
- 数据收集时越多越好
- 但是进行数据处理时,数据太多,人的大脑并不好处理
- 所以我们不能直接看原始数据,而是从中提炼出一些代表性的数据
- 比如早期统计学学家,提出,平均人,也就是平均值的概念。作为数据的代表
1.2 所以,需要用少数几个关键数据代表1群数据
- 均值:代表数据的普通特征(描述:集中趋势)
- 方差:代表数据的离散趋势(描述:分散趋势)
1.2.1 平均值
- 用代表值/ 典型值来代表数据,是有价值的
- 平均值,是具有代表性的
- 而且是预测数据最合适的数据。(只有这一组数据这一个变量时!)
1.2.2 平均值的问题:方差
- 但是也有问题
- 比如,平均值相同的两组数,可能实际样本数据相差很大
- 所以除了描述平均程度的代表指标:平均值,还需要另外一个维度的代表: 描述数据分散程度的指标。
2 代表性的数据1:均值
2.1 平均数
- 算术平均数,
- Mean=(x1+x2+….+xn)/n
2.2 其他平均数
- 几何平均数,= sqrt开n次方 (x1+x2+….+xn)
- 加权平均数,= p1*x1+p2*x2+....+pn*xn
- 调和平均数,=n/(1/x1+1/x2+.......+1/xn)
2.3 期望值= 以概率为权重的 加权平均值
- 概率论里
- 期望值=平均值
- 期望值= Σ pi*xi
3 其他描述平均值的
3.1 中位数
中位数,永远处于X轴,最小和最大中间,50%位置的数。只需要找X轴即可
- IF Odd,2 X (n/2+1)
- IF Even,2 ( X(n/2)+ X (n/2+1)) / 2
3.2 四分之一分位数,1/4分位数
- 分位数,分位图
- 还有2分位,5分,
3.3 众数
- 众数,出现次数最多的数
- 频率直方图里,最高的那个柱子对应的数就是。
4 描述分散程度的指标:方差,标准差
4.1 方差var
4.1.1 方差公式
- 方差=偏差平方和/N
- 方差=(x1-mean)^2+(x2-mean)^2+….+ (xn-mean)^2 / N
- 方差= E(X)^2-E(X^2)
4.1.2 方差公式的由来,为什么是这个平方和的公式?
- 单个偏差:某偏差=某数据-平均值
- 总偏差: 然后把所有的偏差加和起来,就是总的偏差
- 偏差和=Σ(各数据-平均值),会导致互相抵消
- 偏差的绝对值的和=Σ(|各数据-平均值|) ,理论上可以,但是使用的比较少。
- 偏差平方和=Σ(各数据-平均值)^2
- 方差=偏差平方和/N=Σ(各数据-平均值)^2/N
4.1.3 方差的核心
- 方差的核心把所有得误差加和起来,直接求和,抵消了
- 偏差的绝对值的和用的比较少
- 平方求和,可以不抵消,而且适合导数计算
4.1.4 方差的问题
- 因为方差是平方和/n,数据会变大很多
- 单位也会变奇怪,比如 米→平方米,还可以理解,但是人数→平方人数就很难理解
- 所以还是要用标准差。SD=sqrt(var)
4.2 标准差 SD
- SD=sqrt(var)
5 标准值和概率
5.1 标准值
- Sdxi= (xi-mean)/sd
- 用SD标准差的长度作为单位来衡量,每个样本值和均值的差距大小
- 作用可以比较不同量纲的人在对应的正态分布中的位置。
- 而且很多分布,二项分布等,最后都可以趋近正态分布
5.2 有了标准值,才有标准正态分布和 标准化参数
- 有了标准值,才有标准正态分布和 标准化参数
- 标准正态分布,就是正态分布里的数值,转化为标准值之后对应的分布图形
- 各种回归分析里的,标准化参数
- 非标准化参数,1个X单位变化引起多数个单位Y的变化
- 标准化参数,1个X变化1个标准差(X的),引起Y多少个单位的标准差(Y的)Y的变化
5.3 标准值和概率
- 标准差对应概率
- 具体就是 标准正态分布曲线下曲线下面的积分面积= 概率
6 样本和总体的关系
6.1 两组指标/参数
总体的
- (总体)均值,均值
- (总体)方差,方差
- (总体)标准差,标准差
样本的
- 样本均值
- 样本方差
- 样本标准差
- 均方差(新概念)
6.2 我们的目的,是通过样本认识总体
- 从个体case→ 样本sample→ 总体population
- 因为我们的目的不是为了得到样本的各种参数
- 其实我们的目的,本质是为了得到总体的各种参数
6.3 我们怎么从 样本的参数 获得总体的参数?
但是样本的参数,可以直接等于总体参数吗?可以!
也就是说是可以的,但是都要绕一下!
- 样本值的均值,无法直接推断总体均值,但是可以根据中心极限定理,确定多次取样,样本的均值的均值=总体平均值
- 样本方差, 小于总体方差, 样本方差/N-1= 总体方差
6.3.1 总体均值和样本均值,多次抽样时
- 正态分布的第2点,就是样本的平均值的分布也符合正态分布。并且样本平均值的均值=总体平均值,是无偏估计。
- 而样本平均值的均值,符合正态分布。
- 和总体的分布没关系,即使总体不符合正态分布,是偏的。但是样本平均值的分布也是会符合正态分布的!
- 样本的均值,如果有多次试验
- 样本均值的均值=总体均值
6.3.2 总体均值和样本均值,只有单个样本时
- 如果只有单次试验呢?
- 我们可以用 样本均值 和 总体标准差,估计一个总体均值的范围!
前提:如果我们知道样本均值,且知道总体的方差/标准差
我们如果只有1个样本,少数样本,虽然不能直接推算总体样本,但是可以这么估计范围。
比如在95%区间内
总体均值-1.96*标准差/sqrt(n) <= 样本平均值<=总体均值-1.96*标准差/sqrt(n)
因此
总体平均值<=样本平均值+1.96*标准差/sqrt(n)
总体平均值>=样本平均值-1.96*标准差/sqrt(n)当样本数量n一直增大后
总体平均值<=样本平均值+1.96*标准差/sqrt(n)=样本平均值+0
总体平均值>=样本平均值-1.96*标准差/sqrt(n) =样本平均值-0
总体平均值=样本平均值如果范围从95%→99%后,形象的看为什么置信区间变大了
总体平均值<=样本平均值+2.58 *标准差/sqrt(n)
总体平均值>=样本平均值-2.58 *标准差/sqrt(n)
范围变大,95%-99%,也就是置信区间变大了。而拒绝的空间α就很小了。
6.3.3 总体方差和样本方差,无论单次还是多次
- 样本方差 =Σ(xi-mean)^2/n <总体方差
- 均方差 =Σ(xi-mean)^2/(n-1) =总体方差
6.3.4 为什么要多一个“均方差”概念,没有“均均值”呢?
- 因为只有均方差(把n修改为n-1了)才可以等于总体方差!
- 而样本均值可以不修改公式直接=总体均值,或者预测一个总体均值访问,所以没有均均值的概念!
6.3.5 均方差的延申概念
- 均方差 =Σ(xi-mean)^2/(n-1) =总体方差
- 样本标准差=sqrt(样本方差)
- 均标准差 =sqrt(均方差)
7 上面的逻辑漏洞
7.1 有问题的地方
我们样本数量少,只知道样本的均值,样本方差。因此我们无法用 多次样本均值的均值=总体均值,这样的大数定律去推导。我们可以上面的这个正态分布的区间去估计
- 但是这个估计还有一个逻辑上有问题的地方
- 但是这里面用到的δ可不是样本的标准差,而是总体的标准差
- 我们连总体的均值都不知道,怎么会知道总体的标准差??
- 这是个逻辑悖论
7.2 勉强说的过去的解释
而如果用样本的标准差去替代总体的,也是个办法
因为
样本方差的分母从N改为(N-1)=总体方差,所以还是可以行得通的,但是肯定是有误差的。
7.3 但是更常见的情况下,我们怎么办? 用T分布?
如果承认我们不知道总体的均值,也不知道总体的方差怎么办呢?这是常见情况
- 如果像推测总体均值只要知道总体如果呈现正态分布(不是偏的或者奇怪的,)就可以用T分布,DF大于30,T分布和正态分布类似。