当前位置: 首页 > news >正文

【传知代码】短期电力负荷(论文复现)

🍑个人主页:Jupiter.
🚀 所属专栏:传知代码
欢迎大家点赞收藏评论😊

在这里插入图片描述

在这里插入图片描述

目录

  • 备注
    • 前言介绍
    • 问题背景
    • 复现:
      • 一. 多维特征提取的提取框架:
      • 二. 论文中进行性能测试的MultiTag2Vec-STLF模型:
      • 三. 与整数编码(IE)的特征处理方法进行对比
    • 部署方式


备注

  • 需要本文的详细复现过程的项目源码、数据和预训练好的模型可从该地址处获取完整版:地址跳转

前言介绍

  • 短期电力负荷技术是对未来几小时或一天内电力系统负荷变化进行预测的技术。该技术通过收集和分析历史负荷数据及相关影响因素,运用时间序列分析、回归分析、神经网络、支持向量机等数学模型和方法,对电力负荷进行精确预测。短期电力负荷预测对于电力系统运行和调度至关重要,有助于电力企业制定合理的发电和输电计划,保障电网的安全稳定运行,降低运行成本,提高供电质量和经济效益。

问题背景

一. 基本问题

  • 短期电力负荷预测(STLF),即对未来几小时到几周的电力负荷进行准确预测。

二. 本论文发现的问题

  • 在电力负荷预测中,由于数据的高维性和波动性,传统的特征提取方法往往难以捕捉到负荷数据中的复杂模式和关系。

对于论文发现问题的解决方案:
在这里插入图片描述
本论文通过提出一个名为MultiTag2Vec的特征提取框架来解决短期电力负荷预测(STLF)中的特征工程问题。该框架包括两个主要过程:标记(tagging)和嵌入(embedding)。

  • 标记过程:首先,通过从高维时间序列数据中提取关键信息,将电气负荷数据转换成紧凑形式。这一步通过聚类子序列来发现重复出现的模式,并为每个模式分配唯一的标签,从而实现数据的标记。

  • 嵌入过程:接下来,通过学习标签序列中的时间和维度关系来提取特征。为了捕捉这些关系,提出了一个带有卷积层的网络模型,该模型采用数学分析设计的多输出结构。通过训练,可以从任何任意多维标签中提取特征。

复现:

一. 多维特征提取的提取框架:

  • 时间序列切分,聚类,打标签
def segment_time_series(X, T):"""将时间序列 X 分段为长度为 T 的子序列。X: 多元时间序列 (N x D), N 为时间序列长度, D 为维度数T: 每个子序列的长度返回: 分段后的子序列集合,形状为 (N_segment, T, D)"""N, D = X.shapeN_segment = N // T  # 计算分段后的子序列数量segments = np.array([X[i*T:(i+1)*T] for i in range(N_segment)])return segments# 2. 模式发现
def discover_patterns(segments, K):"""对分段后的子序列进行聚类,提取模式。segments: 分段后的子序列集合, 形状为 (N_segment, T, D)K: 聚类的数量,即模式的数量返回: 每个维度的模式集合,形状为 (K, T, D)"""N_segment, T, D = segments.shapepatterns = []# 对每个维度单独进行聚类for d in range(D):# 提取第 d 个维度的所有子序列data_d = segments[:, :, d]  # 形状为 (N_segment, T)# 使用 KMeans 进行聚类kmeans = KMeans(n_clusters=K, random_state=42)kmeans.fit(data_d)# 保存聚类中心(模式)patterns.append(kmeans.cluster_centers_)# patterns 为 D 维的聚类中心集合,形状为 (D, K, T)return np.array(patterns)# 3. 数据标记
def tag_data(segments, patterns):"""对每个子序列打标签,标签为距离最近的聚类中心。segments: 分段后的子序列集合, 形状为 (N_segment, T, D)patterns: 每个维度的聚类中心集合,形状为 (D, K, T)返回: 每个子序列的标签集合,形状为 (N_segment, D)"""N_segment, T, D = segments.shapeK = patterns.shape[1]  # 模式的数量labels = np.zeros((N_segment, D), dtype=int)# 对每个维度进行标记for d in range(D):for i in range(N_segment):# 计算当前子序列与所有聚类中心的距离distances = np.linalg.norm(segments[i, :, d] - patterns[d], axis=1)# 选择最小距离的聚类中心的标签labels[i, d] = np.argmin(distances)return labels
  • 嵌入网络定义:
class EmbeddingNetwork(nn.Module):def __init__(self, D, K, M):super(EmbeddingNetwork, self).__init__()# 卷积层,用于提取输入张量的特征self.conv = nn.Conv2d(in_channels=D, out_channels=M, kernel_size=(1, K), stride=1)  self.pool = nn.AdaptiveAvgPool2d((1, 1))# 两个并行的全连接层,用于预测两个维度的输出标签self.fc1 = nn.Linear(M, K)self.fc2 = nn.Linear(M, K)def forward(self, x):# 卷积层print(x.shape)x = self.conv(x)  # 卷积操作print(x.shape)x = self.pool(x)  # 使用自适应平均池化,将每个样本缩减为大小为 (M, 1)print(x.shape)x = x.view(x.size(0), -1)  # 展平张量,形状变为 (batch_size, M)# 两个并行的全连接层output1 = self.fc1(x)  # 维度1的输出output2 = self.fc2(x)  # 维度2的输出# 将两个输出拼接在一起,形成最后的输出output = torch.stack((output1, output2), dim=1)return output

二. 论文中进行性能测试的MultiTag2Vec-STLF模型:

class FeatureExtractor(nn.Module):def __init__(self, embedding_network):super(FeatureExtractor, self).__init__()self.conv = embedding_network.convdef forward(self, x):x = self.conv(x)  # 卷积层x = x.view(x.size(0), -1)  # 展平张量return x# 初始化特征提取器
feature_extractor = FeatureExtractor(embedding_network)# 4. 定义 MultiTag2Vec-STLF 模型
class MultiTag2VecSTLF(nn.Module):def __init__(self, input_dim, hidden_dim, output_dim, feature_extractor):super(MultiTag2VecSTLF, self).__init__()self.feature_extractor = feature_extractor# 冻结特征提取器的参数for param in self.feature_extractor.parameters():param.requires_grad = False# 双向 LSTM 层self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)# 自注意力机制self.attention = nn.MultiheadAttention(embed_dim=2 * hidden_dim, num_heads=1, batch_first=True)# 全连接层用于预测下一天 24 小时的负荷self.fc = nn.Linear(2 * hidden_dim, output_dim)def forward(self, x):x = self.feature_extractor(x)x = x.view(x.size()[0], seg_c, -1)# LSTM 前向传播lstm_out, _ = self.lstm(x)  # lstm_out 形状: (batch_size, seq_length, 2 * hidden_dim)# 注意力机制attn_output, _ = self.attention(lstm_out, lstm_out, lstm_out)  # 计算自注意力,形状: (batch_size, seq_length, 2 * hidden_dim)context_vector = torch.sum(attn_output, dim=1)  # 计算上下文向量,形状: (batch_size, 2 * hidden_dim)# 全连接层预测output = self.fc(context_vector)  # 预测输出,形状: (batch_size, output_dim)return output

三. 与整数编码(IE)的特征处理方法进行对比

使用论文中的GEFCom2014数据集中的温度和负荷数据,训练的参数设置按照论文中最优效果的参数设置。论文中使用的温度数据来自于数据集中的哪一个气象站,论文中没有说,此处是选择w1气象站的温度数据训练的结果和论文中的RMSE指标不太一样,但是从IE和MultiTag2Vec的RMSE指标对比可以看到,论文提出的特征提取方法具有一定优势。

部署方式

  • Python 3.9.12
  • Pytorch
  • 以及其他的常用python库

  • 需要本文的详细复现过程的项目源码、数据和预训练好的模型可从该地址处获取完整版:地址跳转
http://www.lryc.cn/news/473912.html

相关文章:

  • ubuntu20.04 加固方案-设置重复登录失败后锁定时间限制
  • 【综合算法学习】(第十三篇)
  • Web3 Key Talking #4|Sui有何不同?及其发展路线图
  • Axios 请求超时设置无效的问题及解决方案
  • 数据结构+算法
  • 利用ExcelJS封装一个excel表格的导出
  • AI 原生时代,更要上云:百度智能云云原生创新实践
  • C语言程序编译运行
  • 视频点播系统扩展示例
  • echo $? —— Linux 中的退出状态码详解
  • heic格式转化jpg最简单方法?快来学习这几种简单的转换方法!
  • 力扣(leetcode)每日一题 3259 超级饮料的最大强化能量|动态规划
  • Webserver(2.7)内存映射
  • vue3父子组件传值,子组件暴漏方法
  • Linux_04 Linux常用命令——tar
  • Java项目实战II基于Java+Spring Boot+MySQL的编程训练系统(源码+数据库+文档)
  • Rust:文档注释 //! 和 ///
  • 练习LabVIEW第二十七题
  • 使用React构建现代Web应用
  • 【系统设计】Merkle 算法在 Git 中的应用:深入理解与实践
  • 【umi max】关于umi构建的项目在本地服务运行正常,但是部署时无致命报错却白屏,html文档的#root容器没有子元素的原因及解决办法
  • Openlayers高级交互(14/20):汽车移动轨迹动画(开始、暂停、结束)
  • 蓝牙MCU蓝牙医疗检测相关案例
  • pytorch环境安装和更新,额外装cuda有什么意义
  • 【观成科技】APT组织常用开源和商业工具加密流量特征分析
  • Java开发者的Python快速进修指南:面向对象进阶
  • 【商汤科技-注册/登录安全分析报告】
  • 诱骗取电快充协议芯片,支持与其它 MCU 共用 D+D-网络和电脑传输数据
  • Java Executor ScheduledExecutorService 源码
  • 【力扣 + 牛客 | SQL题 | 每日6题】牛客SQL热题 + 力扣hard