当前位置: 首页 > news >正文

空间解析几何5-空间圆到平面的距离【附MATLAB代码】

目录

理论公式

matlab代码

理论公式

matlab代码

function [dis,P,Q,L]=Circle2PlaneDistance(T,R,n,Pn)
% output
% dis 为最短距离,P为距离最短时圆上的点 Q为P对应的投影点 L为最小值有几个
% input
% T为园心到基坐标系的变换矩阵 R为圆半径 n为平面的单位法向量,Pn为平面上一点
d = 1000;
alf = 0;
sym i;
y=0;
P=[];
Q=[];
L = 0;
A = R*(n(1)*T(1,1)+n(2)*T(2,1)+n(3)*T(3,1));
B = R*(n(1)*T(1,2)+n(2)*T(2,2)+n(3)*T(3,2));
C = n(1)*T(1,4)+n(2)*T(2,4)+n(3)*T(3,4)-(n(1)*Pn(1)+n(2)*Pn(2)+n(3)*Pn(3));
if(B==0)theta(1) = 0;theta(2) = pi;i=2;if(-1<=C&&C<=1)theta(3) = acos(-C);i=3;endfor t=1:ib = sqrt((A*cos(theta(t))+B*sin(theta(t))+C)^2);if(b<d)d=b;alf = theta(t);endif(abs(b) < 1e-8)alf = theta;P = [R*T(1,1)*cos(alf)+R*T(1,2)*sin(alf)+T(1,4),R*T(2,1)*cos(alf)+R*T(2,2)*sin(alf)+T(2,4),R*T(3,1)*cos(alf)+R*T(3,2)*sin(alf)+T(3,4)];tt =  n(1)*P(1)+n(2)*P(2)+n(3)*P(3)-(n(1)*Pn(1)+n(2)*Pn(2)+n(3)*Pn(3));Q = [Q;P(1)-n(1)*tt,P(2)-n(2)*tt,P(3)-n(3)*tt];L=L+1;endend
end
if(A==0)theta(1) = pi/2;theta(2) = -pi/2;i=2;if(-1<=C&&C<=1)theta(3) = asin(-C);i=3;endfor t=1:ib = sqrt((A*cos(theta(i))+B*sin(theta(i))+C)^2);if(b<d)d=b;alf = theta(t);endif(abs(b) < 1e-8)alf = theta;P = [R*T(1,1)*cos(alf)+R*T(1,2)*sin(alf)+T(1,4),R*T(2,1)*cos(alf)+R*T(2,2)*sin(alf)+T(2,4),R*T(3,1)*cos(alf)+R*T(3,2)*sin(alf)+T(3,4)];tt =  n(1)*P(1)+n(2)*P(2)+n(3)*P(3)-(n(1)*Pn(1)+n(2)*Pn(2)+n(3)*Pn(3));Q = [Q;P(1)-n(1)*tt,P(2)-n(2)*tt,P(3)-n(3)*tt];L=L+1;endend
end
u = A*B-B*C;
v = 2*A*A-2*B*B-2*A*C;
w = -6*A*B;
g = 2*B*B-2*A*A-2*A*C;
h = A*B+B*C;
[u,v,w,g,h];if(u == 0&&v==0&&w==0)root = 0;i = 1;else if(u == 0&&v==0)[root,y,i]= Solve2OrderEquaton([v,w,g,h]);else if(u == 0)[root,y,i]= Solve3OrderEquaton([v,w,g,h]);else[root,y,i] =  Solve4OrderEquaton([u,v,w,g,h]);endendendfor t=1:itheta = 2*atan(root(t));b = sqrt((A*cos(theta)+B*sin(theta)+C)^2);if(b<d)d=b;alf = theta;endif(abs(b) < 1e-8)alf = theta;P = [R*T(1,1)*cos(alf)+R*T(1,2)*sin(alf)+T(1,4),R*T(2,1)*cos(alf)+R*T(2,2)*sin(alf)+T(2,4),R*T(3,1)*cos(alf)+R*T(3,2)*sin(alf)+T(3,4)];tt =  n(1)*P(1)+n(2)*P(2)+n(3)*P(3)-(n(1)*Pn(1)+n(2)*Pn(2)+n(3)*Pn(3));Q = [Q;P(1)-n(1)*tt,P(2)-n(2)*tt,P(3)-n(3)*tt];L=L+1;endend
TB = alf*180/pi;
dis = d;
if(abs(dis) > 1e-8)P = [R*T(1,1)*cos(alf)+R*T(1,2)*sin(alf)+T(1,4),R*T(2,1)*cos(alf)+R*T(2,2)*sin(alf)+T(2,4),R*T(3,1)*cos(alf)+R*T(3,2)*sin(alf)+T(3,4)];tt =  n(1)*P(1)+n(2)*P(2)+n(3)*P(3)-(n(1)*Pn(1)+n(2)*Pn(2)+n(3)*Pn(3));Q = [P(1)-n(1)*tt,P(2)-n(2)*tt,P(3)-n(3)*tt];L=L+1;
end
endfunction [root,y,i] = Solve4OrderEquaton(parameter)
a=parameter(2)/parameter(1);
b=parameter(3)/parameter(1);
c=parameter(4)/parameter(1);
d=parameter(5)/parameter(1);a3=1;
b3=-b;
c3=(a*c-4*d);
d3=-(a^2*d-4*b*d+c^2);
parameter3=[a3,b3,c3,d3];
[root3,y3,i3] = Solve3OrderEquaton(parameter3);
i=0;
root=[];
for j=1:length(root3)if(a^2/4-b+root3(j)<0||root3(j)^2/4-d<0)continue;endalpha=sqrt(a^2/4-b+root3(j));beta=sqrt(root3(j)^2/4-d);if(a*root3(j)/2-c>0)a21=1;b21=a/2-alpha;c21=root3(j)/2-beta;parameter21=[a21,b21,c21];[root21,y21,i21] = Solve2OrderEquaton(parameter21);a22=1;b22=a/2+alpha;c22=root3(j)/2+beta;parameter22=[a22,b22,c22];[root22,y22,i22] = Solve2OrderEquaton(parameter22);elsea21=1;b21=a/2-alpha;c21=root3(j)/2+beta;parameter21=[a21,b21,c21];[root21,y21,i21] = Solve2OrderEquaton(parameter21);a22=1;b22=a/2+alpha;c22=root3(j)/2-beta;parameter22=[a22,b22,c22];[root22,y22,i22] = Solve2OrderEquaton(parameter22);endroot4{j}=[root21,root22];i4{j}=[i21,i22];root=[root,root4{j}];i=i+i21+i22;break
end
for i_index=length(root):-1:1for j=i_index-1:-1:1if(abs(root(i_index)-root(j))<0.00001)root=root(1:length(root)-1);i=i-1;break;endend
end
y=root.^4+a*root.^3+b*root.^2+c*root+d;
end
function [root,y,i] = Solve3OrderEquaton(parameter)
a=parameter(1);
b=parameter(2);
c=parameter(3);
d=parameter(4);
a_2=a*a;
a_3=a_2*a;
b_2=b*b;
b_3=b_2*b;
p=c/3/a-b_2/9/a_2;
q=d/2/a+b_3/27/a_3-b*c/6/a_2;
delta=q*q+p^3;
if(delta>0)i=1;root=nthroot(-q+sqrt(delta),3)+nthroot(-q-sqrt(delta),3)-b/3/a;
elseif(delta==0)i=2;root(1)=-2*nthroot(q,3)-b/3/a;root(2)=nthroot(q,3)-b/3/a;
elsei=3;alpha=1/3*acos(-q*sqrt(-p)/p^2);root(1)=2*sqrt(-p)*cos(alpha)-b/3/a;root(2)=2*sqrt(-p)*cos(alpha+2/3*pi)-b/3/a;root(3)=2*sqrt(-p)*cos(alpha+4/3*pi)-b/3/a;
end
y=a*root.^3+b*root.^2+c*root+d;
endfunction [root,y,i] = Solve2OrderEquaton(parameter)
a=parameter(1);
b=parameter(2);
c=parameter(3);
delta=b^2-4*a*c;
if(delta>0)i=2;root(1)=(-b+sqrt(delta))/2/a;root(2)=(-b-sqrt(delta))/2/a;
elseif(delta==0)i=1;root=-b/2/a;
elsei=0;root=[];
end
y=a*root.^2+b*root+c;
end

测试代码:

Tc1 = [  -0.5662    0.7741    0.2831    1.0000;-0.6924   -0.6330    0.3462    1.0000;0.4472         0    0.8944    1.0000;0         0         0    1.0000];
R = 3;
n = [0 0 1];
pn = [0 0 0];
[dis,P,Q] = Circle2PlaneDistance(Tc1,R,n,Pn)

测试结果:

http://www.lryc.cn/news/463523.html

相关文章:

  • [已解决] pycharm添加本地conda虚拟环境 + 配置解释器 - pycharm找不到conda可执行文件
  • SENT - Single Edge Nibble Transmission for Automotive
  • 2024年软件设计师中级(软考中级)详细笔记【7】面向对象技术(下)23种设计模式(分值10+)
  • 未来人工智能的发展对就业市场的影响 人工智能在生活中的相关
  • Oracle EBS 中财务模块
  • 基于SSM公廉租房维保系统的设计
  • 【AI大模型】深入Transformer架构:解码器部分的实现与解析
  • 前端html js css 基础巩固3
  • 如在下载自己的需要的rmp包呢
  • Android TextView实现一串文字特定几个字改变颜色
  • 桃子叶片病害分类检测数据集(猫脸码客 第221期)
  • Vue--》掌握自定义依赖引入的最佳实践
  • repo 命令大全详解(第十四篇 repo overview)
  • 【设计模式】深入理解Python中的抽象工厂设计模式
  • 网站建设完成后,多久需要升级迭代一次
  • 一个整型数组里除了两个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字
  • Vue基本学习2
  • 创作者等级权益说明
  • 基于SpringBoot+Vue+uniapp微信小程序的校园反诈骗微信小程序的详细设计和实现(源码+lw+部署文档+讲解等)
  • 统一修改UI库样式的几种方式
  • ICM20948 DMP代码详解(88)
  • 字节跳动实习生投毒自家大模型细节曝光 影响到底有多大?
  • 【路径规划】蚁群算法优化bp神经网络回归预测
  • 如何在OceanBase中新增系统变量及应用实践
  • Olap数据处理
  • Tailwind Starter Kit 一款极简的前端快速启动模板
  • 物联网智能家居环境监测系统
  • 观测云 AI 助手上线:智能运维,从此触手可及!
  • 案例分析:拒绝服务攻击引发的网络调优之旅
  • Spring Boot Web框架:智慧社区设计新思路