当前位置: 首页 > news >正文

其他:Python语言绘图合集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

文章目录

    • 介绍
    • 注意
    • 导入数据
    • 函数模块
    • 画图

介绍

python语言的科研绘图合集

注意

This dataset includes the following (All files are preceded by "Marle_et_al_Nature_AirborneFraction_"):- "Datasheet.xlsx": Excel dataset containing all annual and monthly emissions and CO2 time series used for the analysis, and the resulting airborne fraction time series.- "Script.py": 
BEFORE RUNNING THE SCRIPT: change the 'wdir' variable to the directory containing the provided script and files.
NOTE: This script requires the Python module: 'pymannkendall'
Python script used for reproducing the results and figures from the paper. The provided Datasheet.xlsx file and the .zip and .npz files are required for this program. In case all these files are found by the script, it should run within several seconds. Successful execution of the script will save Figures 1-4 from the main text and print the data from Table 1. In case script execution takes longer, please check if the .xlsx, .zip and .npz files are correctly present in the assigned 'wdir' directory. Otherwise the script will start recalculating these files, which might take a while (see notes below).- "MC10000_MK_ts_TRENDabs.zip": .zip file containing all results from the Monte-Carlo simulation for trend estimation for Figure 3 (calculated using Python function 'calc_AF_MonteCarlo()'). This .zip file contains multiple .npz files for different emission scenarios and data treatments. This .zip file is managed by the Python script function 'calc_AF_MonteCarlo_filemanager()', there is no need to unzip the file manually. In case the .zip file is not found by the Python script (e.g. because the .zip file was unpacked manually and deleted), the program will start recalculating and save a new .zip file. This can take several minutes dependent on the computer used. Recalculated results could differ very slightly due to the random factor in the Monte-Carlo approach, even though the 10,000 iterations bring this variation to a minimum.- "MC1000_MK_run50x50_TRENDabs.npz": .npz file containing the Monte-Carlo results used for producing Figure 4 (calculated using Python function 'calc_AF_MonteCarlo_ARR()'). In case the .npz file is not found by the Python script (e.g. because it was deleted or not downloaded), the program will start recalculating and save a new file. This can take around 30 hours(!) dependent on the computer used. Recalculated results could differ slightly due to the random factor in the Monte-Carlo approach.- "tol_colors.py": Additional Python module used in script.py, required for producing the colors used in the Main text figures. Source: https://personal.sron.nl/~pault/- Figure files: Figures 1-4 from the Main text saved as .pdf files. Figure 3 is saved as three independent panels. The Figures are also reproduced by script.py if executed successfully.

导入数据

数据可从以下链接下载(画图所需要的所有数据):

  • 百度云盘链接: https://pan.baidu.com/s/1D9qBDOIxDRGtuvUMVKtxBA

  • 提取码: fhp3

函数模块

讲下面代码存成tol_colors.py

import numpy as np
from matplotlib.colors import LinearSegmentedColormap, to_rgba_arraydef discretemap(colormap, hexclrs):"""Produce a colormap from a list of discrete colors without interpolation."""clrs = to_rgba_array(hexclrs)clrs = np.vstack([clrs[0], clrs, clrs[-1]])cdict = {}for ki, key in enumerate(('red','green','blue')):cdict[key] = [ (i/(len(clrs)-2.), clrs[i, ki], clrs[i+1, ki]) for i in range(len(clrs)-1) ]return LinearSegmentedColormap(colormap, cdict)class TOLcmaps(object):"""Class TOLcmaps definition."""def __init__(self):""""""self.cmap = Noneself.cname = Noneself.namelist = ('sunset_discrete', 'sunset', 'BuRd_discrete', 'BuRd','PRGn_discrete', 'PRGn', 'YlOrBr_discrete', 'YlOrBr', 'WhOrBr','iridescent', 'rainbow_PuRd', 'rainbow_PuBr', 'rainbow_WhRd','rainbow_WhBr', 'rainbow_discrete')self.funcdict = dict(zip(self.namelist,(self.__sunset_discrete, self.__sunset, self.__BuRd_discrete,self.__BuRd, self.__PRGn_discrete, self.__PRGn,self.__YlOrBr_discrete, self.__YlOrBr, self.__WhOrBr,self.__iridescent, self.__rainbow_PuRd, self.__rainbow_PuBr,self.__rainbow_WhRd, self.__rainbow_WhBr,self.__rainbow_discrete)))def __sunset_discrete(self):"""Define colormap 'sunset_discrete'."""clrs = ['#364B9A', '#4A7BB7', '#6EA6CD', '#98CAE1', '#C2E4EF','#EAECCC', '#FEDA8B', '#FDB366', '#F67E4B', '#DD3D2D','#A50026']self.cmap = discretemap(self.cname, clrs)self.cmap.set_bad('#FFFFFF')def __sunset(self):"""Define colormap 'sunset'."""clrs = ['#364B9A', '#4A7BB7', '#6EA6CD', '#98CAE1', '#C2E4EF','#EAECCC', '#FEDA8B', '#FDB366', '#F67E4B', '#DD3D2D','#A50026']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#FFFFFF')def __BuRd_discrete(self):"""Define colormap 'BuRd_discrete'."""clrs = ['#2166AC', '#4393C3', '#92C5DE', '#D1E5F0', '#F7F7F7','#FDDBC7', '#F4A582', '#D6604D', '#B2182B']self.cmap = discretemap(self.cname, clrs)self.cmap.set_bad('#FFEE99')def __BuRd(self):"""Define colormap 'BuRd'."""clrs = ['#2166AC', '#4393C3', '#92C5DE', '#D1E5F0', '#F7F7F7','#FDDBC7', '#F4A582', '#D6604D', '#B2182B']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#FFEE99')def __PRGn_discrete(self):"""Define colormap 'PRGn_discrete'."""clrs = ['#762A83', '#9970AB', '#C2A5CF', '#E7D4E8', '#F7F7F7','#D9F0D3', '#ACD39E', '#5AAE61', '#1B7837']self.cmap = discretemap(self.cname, clrs)self.cmap.set_bad('#FFEE99')def __PRGn(self):"""Define colormap 'PRGn'."""clrs = ['#762A83', '#9970AB', '#C2A5CF', '#E7D4E8', '#F7F7F7','#D9F0D3', '#ACD39E', '#5AAE61', '#1B7837']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#FFEE99')def __YlOrBr_discrete(self):"""Define colormap 'YlOrBr_discrete'."""clrs = ['#FFFFE5', '#FFF7BC', '#FEE391', '#FEC44F', '#FB9A29','#EC7014', '#CC4C02', '#993404', '#662506']self.cmap = discretemap(self.cname, clrs)self.cmap.set_bad('#888888')def __YlOrBr(self):"""Define colormap 'YlOrBr'."""clrs = ['#FFFFE5', '#FFF7BC', '#FEE391', '#FEC44F', '#FB9A29','#EC7014', '#CC4C02', '#993404', '#662506']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#888888')def __WhOrBr(self):"""Define colormap 'WhOrBr'."""clrs = ['#FFFFFF', '#FFF7BC', '#FEE391', '#FEC44F', '#FB9A29','#EC7014', '#CC4C02', '#993404', '#662506']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#888888')def __iridescent(self):"""Define colormap 'iridescent'."""clrs = ['#FEFBE9', '#FCF7D5', '#F5F3C1', '#EAF0B5', '#DDECBF','#D0E7CA', '#C2E3D2', '#B5DDD8', '#A8D8DC', '#9BD2E1','#8DCBE4', '#81C4E7', '#7BBCE7', '#7EB2E4', '#88A5DD','#9398D2', '#9B8AC4', '#9D7DB2', '#9A709E', '#906388','#805770', '#684957', '#46353A']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#999999')def __rainbow_PuRd(self):"""Define colormap 'rainbow_PuRd'."""clrs = ['#6F4C9B', '#6059A9', '#5568B8', '#4E79C5', '#4D8AC6','#4E96BC', '#549EB3', '#59A5A9', '#60AB9E', '#69B190','#77B77D', '#8CBC68', '#A6BE54', '#BEBC48', '#D1B541','#DDAA3C', '#E49C39', '#E78C35', '#E67932', '#E4632D','#DF4828', '#DA2222']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#FFFFFF')def __rainbow_PuBr(self):"""Define colormap 'rainbow_PuBr'."""clrs = ['#6F4C9B', '#6059A9', '#5568B8', '#4E79C5', '#4D8AC6','#4E96BC', '#549EB3', '#59A5A9', '#60AB9E', '#69B190','#77B77D', '#8CBC68', '#A6BE54', '#BEBC48', '#D1B541','#DDAA3C', '#E49C39', '#E78C35', '#E67932', '#E4632D','#DF4828', '#DA2222', '#B8221E', '#95211B', '#721E17','#521A13']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#FFFFFF')def __rainbow_WhRd(self):"""Define colormap 'rainbow_WhRd'."""clrs = ['#E8ECFB', '#DDD8EF', '#D1C1E1', '#C3A8D1', '#B58FC2','#A778B4', '#9B62A7', '#8C4E99', '#6F4C9B', '#6059A9','#5568B8', '#4E79C5', '#4D8AC6', '#4E96BC', '#549EB3','#59A5A9', '#60AB9E', '#69B190', '#77B77D', '#8CBC68','#A6BE54', '#BEBC48', '#D1B541', '#DDAA3C', '#E49C39','#E78C35', '#E67932', '#E4632D', '#DF4828', '#DA2222']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#666666')def __rainbow_WhBr(self):"""Define colormap 'rainbow_WhBr'."""clrs = ['#E8ECFB', '#DDD8EF', '#D1C1E1', '#C3A8D1', '#B58FC2','#A778B4', '#9B62A7', '#8C4E99', '#6F4C9B', '#6059A9','#5568B8', '#4E79C5', '#4D8AC6', '#4E96BC', '#549EB3','#59A5A9', '#60AB9E', '#69B190', '#77B77D', '#8CBC68','#A6BE54', '#BEBC48', '#D1B541', '#DDAA3C', '#E49C39','#E78C35', '#E67932', '#E4632D', '#DF4828', '#DA2222','#B8221E', '#95211B', '#721E17', '#521A13']self.cmap = LinearSegmentedColormap.from_list(self.cname, clrs)self.cmap.set_bad('#666666')def __rainbow_discrete(self, lut=None):"""Define colormap 'rainbow_discrete'."""clrs = ['#E8ECFB', '#D9CCE3', '#D1BBD7', '#CAACCB', '#BA8DB4','#AE76A3', '#AA6F9E', '#994F88', '#882E72', '#1965B0','#437DBF', '#5289C7', '#6195CF', '#7BAFDE', '#4EB265','#90C987', '#CAE0AB', '#F7F056', '#F7CB45', '#F6C141','#F4A736', '#F1932D', '#EE8026', '#E8601C', '#E65518','#DC050C', '#A5170E', '#72190E', '#42150A']indexes = [[9], [9, 25], [9, 17, 25], [9, 14, 17, 25], [9, 13, 14, 17,25], [9, 13, 14, 16, 17, 25], [8, 9, 13, 14, 16, 17, 25], [8,9, 13, 14, 16, 17, 22, 25], [8, 9, 13, 14, 16, 17, 22, 25, 27],[8, 9, 13, 14, 16, 17, 20, 23, 25, 27], [8, 9, 11, 13, 14, 16,17, 20, 23, 25, 27], [2, 5, 8, 9, 11, 13, 14, 16, 17, 20, 23,25], [2, 5, 8, 9, 11, 13, 14, 15, 16, 17, 20, 23, 25], [2, 5,8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25], [2, 5, 8, 9, 11,13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 8, 9, 11,13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11,13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11,13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4, 6, 7, 8,9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4,6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26,27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20,22, 24, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15,16, 17, 18, 20, 22, 24, 25, 26, 27, 28], [0, 1, 3, 4, 6, 7, 8,9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28]]if lut == None or lut < 1 or lut > 23:lut = 22self.cmap = discretemap(self.cname, [ clrs[i] for i in indexes[lut-1] ])if lut == 23:self.cmap.set_bad('#777777')else:self.cmap.set_bad('#FFFFFF')def show(self):"""List names of defined colormaps."""print(' '.join(repr(n) for n in self.namelist))def get(self, cname='rainbow_PuRd', lut=None):"""Return requested colormap, default is 'rainbow_PuRd'."""self.cname = cnameif cname == 'rainbow_discrete':self.__rainbow_discrete(lut)else:self.funcdict[cname]()return self.cmapdef tol_cmap(colormap=None, lut=None):"""Continuous and discrete color sets for ordered data.Return a matplotlib colormap.Parameter lut is ignored for all colormaps except 'rainbow_discrete'."""obj = TOLcmaps()if colormap == None:return obj.namelistif colormap not in obj.namelist:colormap = 'rainbow_PuRd'print('*** Warning: requested colormap not defined,','known colormaps are {}.'.format(obj.namelist),'Using {}.'.format(colormap))return obj.get(colormap, lut)def tol_cset(colorset=None):"""Discrete color sets for qualitative data.Define a namedtuple instance with the colors.Examples for: cset = tol_cset(<scheme>)- cset.red and cset[1] give the same color (in default 'bright' colorset)- cset._fields gives a tuple with all color names- list(cset) gives a list with all colors"""from collections import namedtuplenamelist = ('bright', 'high-contrast', 'vibrant', 'muted', 'medium-contrast', 'light')if colorset == None:return namelistif colorset not in namelist:colorset = 'bright'print('*** Warning: requested colorset not defined,','known colorsets are {}.'.format(namelist),'Using {}.'.format(colorset)) if colorset == 'bright':cset = namedtuple('Bcset','blue red green yellow cyan purple grey black')return cset('#4477AA', '#EE6677', '#228833', '#CCBB44', '#66CCEE','#AA3377', '#BBBBBB', '#000000')if colorset == 'high-contrast':cset = namedtuple('Hcset','blue yellow red black')return cset('#004488', '#DDAA33', '#BB5566', '#000000')if colorset == 'vibrant':cset = namedtuple('Vcset','orange blue cyan magenta red teal grey black')return cset('#EE7733', '#0077BB', '#33BBEE', '#EE3377', '#CC3311','#009988', '#BBBBBB', '#000000')if colorset == 'muted':cset = namedtuple('Mcset','rose indigo sand green cyan wine teal olive purple pale_grey black')return cset('#CC6677', '#332288', '#DDCC77', '#117733', '#88CCEE','#882255', '#44AA99', '#999933', '#AA4499', '#DDDDDD','#000000')if colorset == 'medium-contrast':cset = namedtuple('Mcset','light_blue dark_blue light_yellow dark_red dark_yellow light_red black')return cset('#6699CC', '#004488', '#EECC66', '#994455', '#997700','#EE99AA', '#000000')if colorset == 'light':cset = namedtuple('Lcset','light_blue orange light_yellow pink light_cyan mint pear olive pale_grey black')return cset('#77AADD', '#EE8866', '#EEDD88', '#FFAABB', '#99DDFF','#44BB99', '#BBCC33', '#AAAA00', '#DDDDDD', '#000000')def main():from matplotlib import pyplot as plt# Change default colorset (for lines) and colormap (for maps).
#    plt.rc('axes', prop_cycle=plt.cycler('color', list(tol_cset('bright'))))
#    plt.cm.register_cmap('rainbow_PuRd', tol_cmap('rainbow_PuRd'))
#    plt.rc('image', cmap='rainbow_PuRd')# Show colorsets tol_cset(<scheme>).schemes = tol_cset()fig, axes = plt.subplots(ncols=len(schemes), figsize=(9, 3))fig.subplots_adjust(top=0.9, bottom=0.02, left=0.02, right=0.92)for ax, scheme in zip(axes, schemes):cset = tol_cset(scheme)names = cset._fieldscolors = list(cset)for name, color in zip(names, colors):ax.scatter([], [], c=color, s=80, label=name)ax.set_axis_off()ax.legend(loc=2)ax.set_title(scheme)plt.show()# Show colormaps tol_cmap(<scheme>). schemes = tol_cmap()gradient = np.linspace(0, 1, 256)gradient = np.vstack((gradient, gradient))fig, axes = plt.subplots(nrows=len(schemes))fig.subplots_adjust(top=0.98, bottom=0.02, left=0.2, right=0.99)for ax, scheme in zip(axes, schemes):pos = list(ax.get_position().bounds)ax.set_axis_off()ax.imshow(gradient, aspect=4, cmap=tol_cmap(scheme))fig.text(pos[0] - 0.01, pos[1] + pos[3]/2., scheme, va='center', ha='right', fontsize=10)plt.show()# Show colormaps tol_cmap('rainbow_discrete', <lut>). gradient = np.linspace(0, 1, 256)gradient = np.vstack((gradient, gradient))fig, axes = plt.subplots(nrows=23)fig.subplots_adjust(top=0.98, bottom=0.02, left=0.25, right=0.99)for lut, ax in enumerate(axes, start=1):pos = list(ax.get_position().bounds)ax.set_axis_off()ax.imshow(gradient, aspect=4, cmap=tol_cmap('rainbow_discrete', lut))fig.text(pos[0] - 0.01, pos[1] + pos[3]/2., 'rainbow_discrete, ' + str(lut), va='center', ha='right', fontsize=10)plt.show()if __name__ == '__main__':main()

画图

# Python standard library
import os
import io
import sys
import time as timer
from zipfile import ZipFile
from collections import OrderedDict
# Scientific modules
import numpy as np
import pandas as pd
import scipy.optimize
import scipy.stats
import scipy.ndimage
import pymannkendall as mk
import matplotlib.pyplot as plt
import matplotlib.colors as pltc
import matplotlib as mpl
from matplotlib.ticker import MultipleLocator
import matplotlib# Change standard values
plt.rc('image', interpolation='none')   # Change default image interpolation
mm = 1/25.4     # Conversion factor inches to mm for figure sizes.# Set working directory
wdir = '/Path/to/directory/'     # Change to directory containing this script and the data.sys.path.append(wdir)# Additional modules provided with this script
import tol_colors# Define functions
def anom(x, order=2):''' Split time series into anomaly and trend componentscalculation of anomaly by removal of 2-order polynomial trend and climatology:param x: time series [1D array]:param order: order of polynomial fit [int] (default=2):return: x_A (anomaly component), x_T (trend component)'''t_m = range(len(x))fitx = np.polyfit(t_m, x, order)fit_fn = np.poly1d(fitx)  # fit functionx_T = fit_fn(t_m)  # x_T is trend componentx_F = x - x_T  # removal of trendx_C = np.mean(np.reshape(x_F, (int(len(t_m) / 12.), 12)), 0)  # x_C is climatologyx_A = x_F - np.tile(x_C, int(len(t_m) / 12.))  # x_A is anomaly, removal of climatologyreturn x_A, x_Tdef norm(x):''' Normalize time series:param x: time series [1D array]:return: normalized time series'''return (x - np.mean(x)) / np.std(x)def tomonthly(x):''' Interpolate annual flux to monthly flux:param x: annual time series [1D array]:return: interpolated monthly time series'''return np.interp(np.linspace(0, len(x)-1/12., len(x)*12), np.linspace(0, len(x)-1, len(x)), x) / 12.def amean(x):''' Calculate annual average:param x: monthly time series [1D array]:return: annual mean'''if len(x) % 12 == 0:return np.nanmean(np.reshape(x, (int(len(x) / 12.), 12)), 1)  # annual averageelse:return xdef lambdafn(x_A, ENSOI_m, VOLC_m, inverse=True):''' Function for determination of lambda:param x_A: time series anomaly [1D array]:param ENSOI_m: monthly ENSO index [1D array]:param VOLC_m: monthly volcanic index [1D array]:param inverse: minimize based on the inverse correlation coefficient [bool] (default=True):return: lambda and corresponding maximum correlation'''if inverse == True:def fuevi(lam): return 1-np.corrcoef((ENSOI_m + lam * VOLC_m, x_A))[0,1]elif inverse == False:def fuevi(lam): return np.corrcoef((ENSOI_m + lam * VOLC_m, x_A))[0,1]lam_maxcor = scipy.optimize.minimize(fuevi, x0=0.5)['x'][0]      # maximize correlation between EVI and x_Amaxcor = fuevi(lam_maxcor)return lam_maxcor, maxcordef filterfn(x_A, x_T, ref):'''Filtering of timeseries by ENSO or EVI index.:param x_A: time series anomaly component [1D array]:param x_T: time series trend component [1D array]:param ref: reference index = ENSOI or EVI [1D array]:return: filtered time series and corresponding mu of minimum variance'''def fu2(mu):     return np.var(x_A - mu*ref)mu_minvar = scipy.optimize.minimize(fu2, x0=1)['x'][0]         # determine mu by minimization of variance.x_U = x_A - mu_minvar*refx_n = x_T + x_U                                         # x_n is the filtered anomalyreturn x_n, mu_minvardef rgba2rgb(rgba, background=None):''' Convert rgba values to rgb. Source: https://stackoverflow.com/questions/50331463/convert-rgba-to-rgb-in-python:param rgba: rgba values [array]:param background: background rgb value [tuple] (default = (255,255,255)):return: rgb values'''if background is None:background = (255, 255, 255)R, G, B = backgroundif rgba.ndim == 3:      row, col, ch = rgba.shape   # 2d array of colors.elif rgba.ndim == 2:    row, ch = rgba.shape        # 1d array of colors.elif rgba.ndim == 1:    ch, = rgba.shapeif ch == 3:return rgbaassert ch == 4, 'RGBA image has 4 channels.'if rgba.ndim == 3:rgb = np.zeros((row, col, 3), dtype='float32')r, g, b, a = rgba[:, :, 0], rgba[:, :, 1], rgba[:, :, 2], rgba[:, :, 3]a = np.asarray(a, dtype='float32') / 255.rgb[:, :, 0] = r * a + (1.0 - a) * Rrgb[:, :, 1] = g * a + (1.0 - a) * Grgb[:, :, 2] = b * a + (1.0 - a) * Belif rgba.ndim == 2:rgb = np.zeros((row, 3), dtype='float32')r, g, b, a = rgba[:, 0], rgba[:, 1], rgba[:, 2], rgba[:, 3]a = np.asarray(a, dtype='float32') / 255.rgb[:, 0] = r * a + (1.0 - a) * Rrgb[:, 1] = g * a + (1.0 - a) * Grgb[:, 2] = b * a + (1.0 - a) * Belif rgba.ndim == 1:rgb = np.zeros((3), dtype='float32')r, g, b, a = rgba[0], rgba[1], rgba[2], rgba[3]a = np.asarray(a, dtype='float32') / 255.rgb[0] = r * a + (1.0 - a) * Rrgb[1] = g * a + (1.0 - a) * Grgb[2] = b * a + (1.0 - a) * Breturn np.asarray(rgb, dtype='uint8')def mktest(t, y):''' Perform Mann-Kendall test for trend estimation.:param t: time axis [1D array]:param y: data time series [1D array]:return: Mann-Kendall test results'''mk_test = mk.original_test(y)# Intercept has to extrapolated to x=0, in order to get similar output format as scipy.stats.linregress.return (mk_test.slope, mk_test.intercept - mk_test.slope * t[0], 0, mk_test.p, 0)     # placed in tuple to get same output format as scipy.linregress.def slopest(t, y, method):''' Wrapper for choosing trend estimation based on linear regression or Mann-Kendall test:param t: time axis [1D array]:param y: data time series [1D array]:param method: linear regression ('linregres') or Mann-Kendall test ('mannkendall') [str]:return: Regression results'''if method == 'linregres':return scipy.stats.linregress(t, y)elif method == 'mannkendall':return mktest(t, y)def mvavg(x, mavg, edge=False):''' Calculate moving average:param x: monthly or annual time series [1D array]:param mavg: window size [int]:param edge: choose how to deal with time series edges [bool] (default = False):return: y, averaged time series'''if edge is True:if mavg % 2 == 0:   # if number is even.x = np.hstack((np.tile(np.mean(x[:int(mavg/2.)]),int(mavg/2.)), x, np.tile(np.mean(x[int(np.floor(-mavg/2.)):]),int(mavg/2.)-1)))            else:               # if number is odd.x = np.hstack((np.tile(np.mean(x[:int(mavg/2.)]),int(mavg/2.)), x, np.tile(np.mean(x[int(np.floor(-mavg/2.)):]),int(mavg/2.))))y = np.convolve(x, np.ones(mavg) / float(mavg), 'valid')else:y = np.convolve(x, np.ones(mavg) / float(mavg), 'same')return ydef load_colors_for_plots():''' Loads line colors, categorial colors and colormap, for use in plotting. Source: https://personal.sron.nl/~pault/:return: colors, ccat_fig1, ccat_fig2, cmap'''# Load line colors for all Figurescolors = tol_colors.tol_cset('high-contrast')colors = [colors.red, colors.yellow, colors.blue]# Load category colors for Figure 1.ccat_fig1 = tol_colors.tol_cset('bright')ccat_fig1b = tol_colors.tol_cset('high-contrast')ccat_fig1 = [ccat_fig1.yellow, ccat_fig1b.red, ccat_fig1.green]# Load category colors for Figure 2.ccat_fig2 = tol_colors.tol_cset('bright')ccat_fig2 = [ccat_fig2.yellow, ccat_fig2.grey, 'black', ccat_fig2.red, ccat_fig2.purple, ccat_fig2.cyan, ccat_fig2.green]# Load colormap for Figure 4.cmap = plt.get_cmap('RdBu_r', 100)return colors, ccat_fig1, ccat_fig2, cmapdef data_selector(lustr, FF_China=None, RESPscheme=None):''' Choose to load one of the three land use emissions dataset time series:param lustr: 'gcp' (Global Carbon Project), 'han' (Houghton & Nassikas), or 'new' (This study):param FF_China: choose which FF scheme to use, China GCP ('GCP'), China Liu et al. (2015) ('LIU'), or China BP (2021):param RESPscheme: choose respiration scheme, normal ('stable') or increasing role of fire ('incfire'):return: tuples with LULCC and FF emission time series.'''if FF_China is None: FF_China = 'GCP'if RESPscheme is None: RESPscheme = 'stable'if lustr == 'gcp':lu_tuple = (LUgcp, LUgcp_m, LUgcp_error, LUgcp_error_m)elif lustr == 'han':lu_tuple = (LUhan, LUhan_m, LUhan_error, LUhan_error_m)elif lustr == 'new':if RESPscheme == 'stable':lu_tuple = (LUnew, LUnew_m, LUnew_error, LUnew_error_m)elif RESPscheme == 'incfire':lu_tuple = (datadict['Total_incfire'], datadict['Total_incfire_m'], LUnew_error, LUnew_error_m)# Select used fossil fuel time seriesif FF_China == 'GCP':ff_tuple = (FFgcp, FFgcp_m, FFgcp_error, FFgcp_error_m)elif FF_China == 'LIU':ff_tuple = (FFadj, FFadj_m, FFadj_error, FFadj_error_m)elif FF_China == 'BP':ff_tuple = (FFadjBP, FFadjBP_m, FFadjBP_error, FFadjBP_error_m)return lu_tuple, ff_tuple# Load data from Excel file
emissions = pd.read_excel(wdir + 'Marle_et_al_Nature_AirborneFraction_Datasheet.xlsx', 'Emissions')
atmosphere = pd.read_excel(wdir + 'Marle_et_al_Nature_AirborneFraction_Datasheet.xlsx', 'Atmosphere')
atmosphere_m = pd.read_excel(wdir + 'Marle_et_al_Nature_AirborneFraction_Datasheet.xlsx', 'Atmosphere_monthly')
faostat = pd.read_excel(wdir + 'Marle_et_al_Nature_AirborneFraction_Datasheet.xlsx', 'FAOStat', index_col=0, header=6) # Load soy, palmoil data# Settings
C2CO2 = 3.66    # C to C02 conversion factor.
fPG = 2.134     # factor ppm CO2 to Pg C.year0 = 1959    # default = 1959
year1 = 2019    # defualt = 2019
years = np.arange(year0, year1+1)               # annual time vector
t_y = np.arange(len(years)) + int(years[0])     # annual time vector for plots
t_m = np.arange(0.0, len(years), 1 / 12.0) + int(years[0])  # monthly time vector for plotsmavg = 15   # Moving average window (default = 15)
edge = int(np.floor(mavg/2.0))  # extra edge values required for moving averageiset = 3    # Which AF time series to use for plotting (default=3). 0 = annual raw ('AF_a'), 1 = monthly smoothed ('AF_ms'), 2 = monthly smoothed and filtered ('AF_msnv'), 3 = annual smoothed and filtered ('AF_asnv')trendcalc = 'abs'           # absolute trend per decade ('abs', default), or relative growth rate ('rgr'; not fully tested, could give errors)
trendmethod = 'mannkendall' # Linear regression ('linregres') or Mann-Kendall test ('mannkendall', default)# unit conversion factors
if trendcalc == 'abs':      uconv = 10      # per year to per decade.
elif trendcalc == 'rgr':    uconv = 100     # fraction to percentage.
cconv = 0.001   # conversion from Tg C to Pg C.# Load colorsets for plots
colors, ccat_fig1, ccat_fig2, cmap = load_colors_for_plots()
Cgcp, Chan, Cnew = colors# find index of start year and end year in data sheets
index0 = np.where(emissions['A'] == year0)[0][0]    # annual indices
index1 = np.where(emissions['A'] == year1)[0][0]
index0_m = np.where(atmosphere_m['A'] == year0)[0][0]   # monthly indices
index1_m = np.where(atmosphere_m['A'] == year1)[0][0]+12-1# Load fossil fuel emissions
FFgcp = np.array(emissions['N'][index0:index1+1]).astype(float) * cconv
FFchinaGCP = np.array(emissions['O'][index0:index1+1]).astype(float) * cconv
FFchinaLIU = np.array(emissions['P'][index0:index1+1]).astype(float) * cconv
FFchinaBP = np.array(emissions['Q'][index0:index1+1]).astype(float) * cconv
FFadj = FFgcp - FFchinaGCP + FFchinaLIU     # Fossil fuels with China emissions replaced by Liu et al. (2015)
FFadjBP = FFgcp - FFchinaGCP + FFchinaBP     # Fossil fuels with China emissions replaced by BP# Load land-use change emissions
LUgcp = np.array(emissions['M'][index0:index1+1]).astype(float) * cconv     # LULCC emissions from Global Carbon Project (2020)
LUhan = np.array(emissions['G'][index0:index1+1]).astype(float) * cconv     # LULCC emissions from Houghton & Nassikas (2017)
LUnew = np.array(emissions['L'][index0:index1+1]).astype(float) * cconv     # LULCC emissions from This Study.# Load atmospheric CO2
CO2mlo = atmosphere['B'][index0:index1+2]   # Atmospheric CO2 Mauna Loa. index +2 because one extra value needed for np.diff.
CO2spo = atmosphere['C'][index0:index1+2]   # Atmospheric CO2 South Pole.
CO2 = np.mean([CO2mlo, CO2spo], axis=0).astype(float)   # Average of MLO and SPO
CO2 = (CO2 - 280) * fPG     # Subtract pre-industrial 280 ppm, convert to Pg C.
CO2_m = np.mean([atmosphere_m['C'][index0_m:index1_m+2], atmosphere_m['D'][index0_m:index1_m+2]], axis=0).astype(float)   # Monthly average of MLO and SPO. index +2 because one extra value needed for np.diff.
CO2_m = (CO2_m - 280) * fPG     # Subtract pre-industrial 280 ppm, convert to Pg C.
dCO2 = np.diff(CO2)
dCO2_m = np.diff(CO2_m)   # -11 instead of -12 because one extra month is needed for np.diff.# Load ENSO and volcanic indices
ENSO_m = np.array(atmosphere_m['E'][index0_m-12:index1_m+1]).astype(float)  # load one year extra (1958), required for 4 month lag.
VOLC_m = np.array(atmosphere_m['F'][index0_m:index1_m+1]).astype(float)# Define annual errors      
LUgcp_error = LUgcp * 0.5   # 50%. Corresponds to about 0.7 Pg C yr-1 in GCP (2020)
LUhan_error = LUhan * 0.5   # 50%
LUnew_error = LUnew * 0.5   # 50%
FFgcp_error = FFgcp * 0.05  # 5%
FFadj_error = (FFgcp - FFchinaGCP) * 0.05 + FFchinaLIU * 0.10  # GCP error=5%, Liu error=10%
FFadjBP_error = (FFgcp - FFchinaGCP) * 0.05 + FFchinaBP * 0.10  # GCP error=5%, BP error=10%
dCO2_error = np.array(atmosphere['E'][index0:index1+1]).astype(float) * fPG# Interpolate annual fluxes to monthly fluxes
LUgcp_m = tomonthly(LUgcp)
LUhan_m = tomonthly(LUhan)
LUnew_m = tomonthly(LUnew)
FFgcp_m = tomonthly(FFgcp)
FFadj_m = tomonthly(FFadj)
FFadjBP_m = tomonthly(FFadjBP)# Calculate monthly error
LUgcp_error_m = LUgcp_m * 0.5
LUhan_error_m = LUhan_m * 0.5
LUnew_error_m = LUnew_m * 0.5
FFgcp_error_m = FFgcp_m * 0.05
FFadj_error_m = ((FFgcp_m - tomonthly(FFchinaGCP)) * 0.05 + tomonthly(FFchinaLIU) * 0.10)  # GCP error=5%, Liu error=10%
FFadjBP_error_m = ((FFgcp_m - tomonthly(FFchinaGCP)) * 0.05 + tomonthly(FFchinaBP) * 0.10)  # GCP error=5%, BP error=10%
dCO2_error_m = np.repeat(dCO2_error, 12) / 12.# Calculate EVI
ENSOI_m = norm(ENSO_m[12-4:-4])  # effect from enso lagged by 4 months and normalized to get enso indexdCO2_A, dCO2_T = anom(dCO2_m)   # Seperate anomaly and trend
dCO2_As = mvavg(dCO2_A, mavg)  # Apply moving average to anomaly
dCO2_s = mvavg(dCO2_m, mavg)lam_maxcor_dCO2_As, maxcor_dCO2_As = lambdafn(dCO2_As, ENSOI_m, VOLC_m, inverse=True)   # Calculate maximum correlation between enso and volcanic indices.
lam_maxcor = -16  # lambda ~= -16 (Raupach, 2008), i.e. volcanic contribution to ensoi
EVI_m = norm(ENSOI_m + lam_maxcor * VOLC_m)     # Calculate index of combination of enso and volcanos, called EVI.
ENSOI_A, ENSOI_T = anom(ENSOI_m)  # ensoi anomaly and trend
EVI_A, EVI_T = anom(EVI_m)  # EVI anomaly and trendENSOI_s = norm(mvavg(ENSOI_m, mavg))  # moving average with time window mavg, and normalize again
ENSOI_As = norm(mvavg(ENSOI_A, mavg))
EVI_s = norm(mvavg(EVI_m, mavg))
EVI_As = norm(mvavg(EVI_A, mavg))# Filter atmospheric CO2 growth rate using EVI index
dCO2_sv_m, mu_minvar = filterfn(dCO2_As, dCO2_T, EVI_As/12)            
dCO2_sv = np.sum(np.reshape(dCO2_sv_m, [len(years), 12]), 1) # annual sum# Set up respiration schemes
fraction_stable = np.ones(index1-index0+1) # stable fraction of fire emissions that is thought to respire (main case)
fraction_incfire = np.linspace(3, 1, year1-year0+1) # increasing fraction of fire emissions that is thought to respire (increasing role of fire) # Load individual LUnew emission components [labels, Excel column, plot color]
metadict = OrderedDict([('Other', ['Other regions', 'J', ccat_fig2[0]]),('EQAS_peatdrain', ['EQAS peat drainage', 'K', ccat_fig2[1]]),('EQAS_deco', ['EQAS decomposition', 'F', ccat_fig2[2]]),('EQAS_peatfire', ['EQAS peat fire', 'E', ccat_fig2[3]]),('EQAS_fire', ['EQAS fire', 'D', ccat_fig2[4]]),('ARCD_deco', ['ARCD decomposition', 'C', ccat_fig2[5]]),('ARCD_fire', ['ARCD fire', 'B', ccat_fig2[6]]),])datadict = OrderedDict()
for keyn in metadict.keys():data = np.array(emissions[metadict[keyn][1]][index0:index1 + 1]).astype(float)if keyn in ['ARCD_deco', 'EQAS_deco']:                  # For decomposition emissions calculate also calculate the 'increasing role of fire' scenario.datadict[keyn] = data * fraction_stable * cconvdatadict[keyn + '_incfire'] = data * fraction_incfire * cconvelse:datadict[keyn] = data * cconv
del datadatadict['Total'] = np.sum([datadict[keyn] for keyn in metadict.keys()], axis=0)   # World LULCC emissions, identical to LUnew.
datadict['Total_incfire'] = datadict['Total'] - datadict['EQAS_deco'] - datadict['ARCD_deco'] + datadict['EQAS_deco_incfire'] + datadict['ARCD_deco_incfire'] # 'increasing role of fire' scenario.
datadict['Total_incfire_m'] = tomonthly(datadict['Total_incfire'])  # interpolate to monthly time series.def plot_Figure1(filename=None):''' Plot paper Figure 1. Emissions distribution.Creates plot with stacked values of ARCD: Emissions + Decomposition + line with soy bean and cattle export,EQAS: Emissions + Peat Drainage + Decomposition + line with palm oil export:param fign: figure number:param filename: filename of saved figure (.pdf format). If filename == None, figure is only displayed and not saved.:return: Figure 1'''fontsize = 7fontsize_legend = 6.5fontsize_panellabel = 8align = 'center'plt.rcParams['hatch.linewidth'] = 0.3fig, (ax1,ax2) = plt.subplots(2, 1, figsize=(120*mm,80*mm))p1 = ax1.bar(t_y, datadict['ARCD_deco'], align=align, color=ccat_fig1[0], edgecolor='white', linewidth=0.6, label='Decomposition')  # , hatch='')p2 = ax1.bar(t_y, datadict['ARCD_fire'], bottom=datadict['ARCD_deco'], align=align, color=ccat_fig1[1], edgecolor='white', linewidth=0.6, label='Fire emissions')  # , hatch='\\\\\\\\')# Add soybean and cattle exportax11 = ax1.twinx() l1 = ax11.plot(t_y[2:], (faostat['ARCD_SoyBean_Tonnes'] + faostat['ARCD_Cattle_Beef_Tonnes'])/1e6, '--', color='black', label='Soy bean and cattle', linewidth=1)p3 = ax2.bar(t_y, datadict['EQAS_peatdrain'], align=align, color=ccat_fig1[2], edgecolor='white', linewidth=0.6, label='Peat drainage')  # , hatch='.....')p4 = ax2.bar(t_y, datadict['EQAS_deco'], bottom=datadict['EQAS_peatdrain'], align=align, color=ccat_fig1[0], edgecolor='white', linewidth=0.6, label='Decomposition')  # , hatch='')p5 = ax2.bar(t_y, (datadict['EQAS_fire'] + datadict['EQAS_peatfire']), bottom=(datadict['EQAS_peatdrain'] + datadict['EQAS_deco']), align=align, color=ccat_fig1[1], edgecolor='white', linewidth=0.6, label='Fire emissions')  # , hatch='\\\\\\\\')# Add palmoil exportax21 = ax2.twinx() l3 = ax21.plot(t_y[2:], faostat['Indo_PalmOil_Tonnes']/1e6, '--', color='black', label='Palm oil', linewidth=1)ax1.set_xlim(1958, 2020)ax1.set_ylim(0, 0.9)ax1.set_yticks([0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9])ax1.grid()ax1.set_axisbelow(True)plt.setp(ax1.get_xticklabels(), visible=False)plt.setp(ax1.get_yticklabels(), fontsize=fontsize)ax11.set_ylim(0, 90)ax11.set_yticks([0,30,60,90])plt.setp(ax11.get_yticklabels(), fontsize=fontsize)handles = [p2, p1] + l1labels = [l.get_label() for l in handles]ax1.legend(handles, labels, loc='upper left', bbox_to_anchor=(0.0, 0.85), fontsize=fontsize_legend, framealpha=1)ax1.text(0.06, 0.9, 'a', horizontalalignment='right', verticalalignment='center', transform=ax1.transAxes, fontsize=fontsize_panellabel, weight='bold')ax1.set_ylabel('Emissions (Pg C year $^{-1}$)', size=fontsize)ax11.set_ylabel('Export commodities (Mt year $^{-1}$)', size=fontsize, rotation=270, va='bottom')ax1.yaxis.set_label_coords(-0.1,-0.1)ax11.yaxis.set_label_coords(1.075,-0.1)ax2.set_xlim(1958, 2020)ax2.set_xlabel('Year', fontsize=fontsize)ax2.set_ylim(0, 1.5)ax2.set_yticks([0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5])ax2.grid()ax2.set_axisbelow(True)plt.setp(ax2.get_xticklabels(), size=fontsize, visible=True)plt.setp(ax2.get_yticklabels(),fontsize=fontsize)ax21.set_ylim(0, 60)plt.setp(ax21.get_yticklabels(),fontsize=fontsize)handles = [p5, p4, p3]+l3labels = [l.get_label() for l in handles]ax2.legend(handles, labels, loc='upper left', bbox_to_anchor=(0.0, 0.85), fontsize=fontsize_legend, framealpha=1)ax2.text(0.06, 0.9, 'b', horizontalalignment='right', verticalalignment='center', transform=ax2.transAxes, fontsize=fontsize_panellabel, weight='bold')if filename:plt.savefig(filename + '.pdf', bbox_inches='tight')else:plt.show()
plot_Figure1(filename=wdir + 'Marle_et_al_Nature_AirborneFraction_Figure1')# Determine annual trend for in Abstract text of manuscript:
LUnew_defos = datadict['Total'] - datadict['Other'] # Total deforestation emissions for EQAS and ARCD.
LUnew_defos_reg = slopest(t_y, LUnew_defos, method='linregres')
LUnew_defos_man = slopest(t_y, LUnew_defos, method='mannkendall')def plot_Figure2(fign, FF_China=None, filename=None):''' Plot paper Figure 2:param fign: figure number:param FF_China: choose which FF scheme to use, China GCP ('GCP'), China Liu et al. (2015) ('LIU'), or China BP (2021):param filename: filename of saved figure (.pdf format). If filename == None, figure is only displayed and not saved.:return: Figure 2'''fontsize = 7fontsize_legend = 6.5fontsize_panellabel = 8if FF_China is None:FF_China = 'GCP'if FF_China == 'GCP':   FF = np.array(FFgcp)elif FF_China == 'LIU': FF = np.array(FFadj)fig = plt.figure(fign, figsize=(183*mm, 89*mm))# Plot annual LUC emissionsax = fig.add_subplot(121)bottom = np.zeros(index1-index0+1)for keyn in metadict.keys():ax.bar(years, datadict[keyn], bottom=bottom, color=metadict[keyn][2], label=metadict[keyn][0], edgecolor='w', width=0.95)   bottom += datadict[keyn]ax.text(0.03, 0.95, 'a', transform=ax.transAxes, fontsize=fontsize_panellabel, weight='bold')ax.set_xlim((year0, year1+1))ax.set_ylim((0, 2.5))ax.set_yticks((0,0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.25,2.5))ax.set_xlabel('Year', fontsize=fontsize)ax.set_ylabel('Net LULCC emissions (Pg C year$^{-1}$)', fontsize=fontsize)ax.tick_params(axis='both', which='major', labelsize=fontsize)h,l = ax.get_legend_handles_labels()ax.legend(h[::-1], l[::-1], bbox_to_anchor=(0.01, 0.95), loc='upper left', fontsize=fontsize_legend, framealpha=1)ax.step(years+0.5, bottom, '-', color='lightgrey', linewidth=1.0)LULCC_this_study = bottom       # == LUnew == datadict['Total']# Plot full carbon budgetax = fig.add_subplot(122)colors = tol_colors.tol_cset('vibrant')Cff = colors.greyCaccent = colors.tealax.step(years, FF, color=Cff, linewidth=1.5, label='Fossil fuel emissions')    # 'grey'ax.step(years, dCO2, color=Caccent ,linewidth=1.5, label='Atmospheric CO$_2$ growth')    # 'deepskyblue'ax.step(years, LUgcp, color=Cgcp, linewidth=1.5, label='LULCC GCP')ax.step(years, LUhan, color=Chan, linewidth=1.5, label='LULCC H&N')ax.step(years, LULCC_this_study, color=Cnew, linewidth=1.5, label='LULCC this study')# add ppm CO2 values as secondary axis.for i in np.arange(0.5, 4, 0.5):ax.text(year1+2, i * fPG, str(i), color=Caccent, va='center', fontsize=fontsize)ax.hlines(i * fPG, year1, year1+1, color=Caccent, linewidth=1.0)ax.text(year1+7, 2 * fPG, 'ppm CO$_2$ year$^{-1}$', rotation=270, color=Caccent, va='center', fontsize=fontsize)ax.text(0.03, 0.95, 'b', transform=ax.transAxes, fontsize=fontsize_panellabel, weight='bold')ax.set_xlim((year0, year1+1))ax.set_ylim((0, 11))ax.set_xlabel('Year', fontsize=fontsize)ax.set_ylabel('Pg C year$^{-1}$', fontsize=fontsize)ax.tick_params(axis='both', which='major', labelsize=fontsize)ax.legend(bbox_to_anchor=(0.01, 0.95), loc='upper left', fontsize=fontsize_legend, framealpha=1)plt.tight_layout()plt.subplots_adjust(left=0.075, right=0.94)if filename:plt.savefig(filename + '.pdf', bbox_inches='tight')else:plt.show()
plot_Figure2(2, filename=wdir + 'Marle_et_al_Nature_AirborneFraction_Figure2')def calc_AF(lustr, FF_China=None, RESPscheme=None): #, trendcalc=None):''' Calculation of the Airborne fraction (without Monte-Carlo simulation).AF_a = annual raw, AF_ms = monthly smoothed, AF_msnv = monthly smoothed and filtered, AF_asnv = annual smoothed and filtered.:param lustr: 'gcp' (Global Carbon Project), 'han' (Houghton & Nassikas), or 'new' (This study):param FF_China: choose which FF scheme to use, China GCP ('GCP'), China Liu et al. (2015) ('LIU'), or China BP (2021):param RESPscheme: choose respiration scheme, normal ('stable') or increasing role of fire ('incfire'):return: AF time series, AF error time series, and AF regression results.=== All results are returned for four data treatments ===:0 = annual raw ('AF_a') [Reported in paper Figure 3]1 = monthly smoothed ('AF_ms') [Not used in paper]2 = monthly smoothed and filtered ('AF_msnv') [Not used in paper]3 = annual smoothed and filtered ('AF_asnv') [Used for final trend estimates, reported in Table 1, Figure 3 and 4]'''if FF_China is None: FF_China = 'GCP'if RESPscheme is None: RESPscheme = 'stable'# Select LULCC and FF emissions time series:lu_tuple, ff_tuple = data_selector(lustr, FF_China, RESPscheme)lu, lu_m, lu_error, lu_error_m = lu_tupleFF, FF_m, FF_error, FF_error_m = ff_tuple# Calculate Airborne fractionAF_a = dCO2 / (FF + lu)             # annual rawAF_ms = dCO2_s / (FF_m + lu_m)      # monthly smoothedAF_msnv = dCO2_sv_m / (FF_m + lu_m) # monthly smoothed and filteredAF_asnv = dCO2_sv / (FF + lu)       # annual smoothed and filteredAF_a_error = np.sqrt(dCO2_error**2 * (1/(FF + lu))**2 + (FF_error**2 + lu_error**2) * (-dCO2/(FF + lu)**2)**2)  # Calculate error propagation.AF_ms_error = np.sqrt(dCO2_error_m**2 * (1/(FF_m + lu_m))**2 + (FF_error_m**2 + lu_error_m**2) * (-dCO2_m/(FF_m + lu_m)**2)**2)AF_msnv_error = np.sqrt(dCO2_error_m**2 * (1/(FF_m + lu_m))**2 + (FF_error_m**2 + lu_error_m**2) * (-dCO2_m/(FF_m + lu_m)**2)**2)AF_asnv_error = np.sqrt(dCO2_error**2 * (1/(FF + lu))**2 + (FF_error**2 + lu_error**2) * (-dCO2/(FF + lu)**2)**2)# Calculate trend in Airborne fraction time series.if trendcalc == 'abs':  # Calculate absolute trend.AF_a_reg = slopest(t_y, AF_a, method=trendmethod)AF_ms_reg = slopest(t_m[edge:-edge], AF_ms[edge:-edge], method=trendmethod)AF_msnv_reg = slopest(t_m[edge:-edge], AF_msnv[edge:-edge], method=trendmethod)AF_asnv_reg = slopest(t_y, AF_asnv, method=trendmethod)elif trendcalc == 'rgr':    # Calculate relative growth rate.AF_a_reg = slopest(t_y, AF_a / float(np.mean(AF_a)), method=trendmethod)AF_ms_reg = slopest(t_m[edge:-edge], AF_ms[edge:-edge] / np.mean(AF_ms[edge:-edge]), method=trendmethod)AF_msnv_reg = slopest(t_m[edge:-edge], AF_msnv[edge:-edge] / np.mean(AF_msnv[edge:-edge]), method=trendmethod)AF_asnv_reg = slopest(t_y, AF_asnv / float(np.mean(AF_asnv)), method=trendmethod)# Store regression results. Format: [slope, p-value, standard error]AF_a_reg = [AF_a_reg[0] * uconv, AF_a_reg[3] * 1, AF_a_reg[4] * uconv]AF_ms_reg = [AF_ms_reg[0] * uconv, AF_ms_reg[3] * 1, AF_ms_reg[4] * uconv]AF_msnv_reg = [AF_msnv_reg[0] * uconv, AF_msnv_reg[3] * 1, AF_msnv_reg[4] * uconv]AF_asnv_reg = [AF_asnv_reg[0] * uconv, AF_asnv_reg[3] * 1, AF_asnv_reg[4] * uconv]return (AF_a, AF_ms, AF_msnv, AF_asnv), (AF_a_error, AF_ms_error, AF_msnv_error, AF_asnv_error), (AF_a_reg, AF_ms_reg, AF_msnv_reg, AF_asnv_reg)
AFgcp, AFERRgcp, REGgcp = calc_AF('gcp')    # AF: time series, AFERR: error time series, and REG: regression results.
AFhan, AFERRhan, REGhan = calc_AF('han')
AFnew, AFERRnew, REGnew = calc_AF('new')
AFnew_b, AFERRnew_b, REGnew_b = calc_AF('new', FF_China='LIU', RESPscheme='stable') # Different scenarios for sensitivity analysis.
AFnew_c, AFERRnew_c, REGnew_c = calc_AF('new', FF_China='GCP', RESPscheme='incfire')
AFnew_d, AFERRnew_d, REGnew_d = calc_AF('new', FF_China='LIU', RESPscheme='incfire')# # Save AF time series into Excel file
# sheet_AF = np.array([AFnew[0], AFERRnew[0], AFnew[3], AFERRnew[3], AFhan[0], AFERRhan[0], AFhan[3], AFERRhan[3], AFgcp[0], AFERRgcp[0], AFgcp[3], AFERRgcp[3]])
# pd.DataFrame(sheet_AF.T).to_excel(wdir+'Excel_AF_annual_2020.xlsx')
# sheet_AFmonthly = np.array([AFnew[1], AFERRnew[1], AFnew[2], AFERRnew[2], AFhan[1], AFERRhan[1], AFhan[2], AFERRhan[2], AFgcp[1], AFERRgcp[1], AFgcp[2], AFERRgcp[2]])
# pd.DataFrame(sheet_AFmonthly.T).to_excel(wdir+'Excel_AF_monthly_2020.xlsx')def calc_AF_MonteCarlo(MC, lustr, FF_China=None, RESPscheme=None, bootstrap=False, detrend=False):''' Calculation of the Airborne fraction using Monte Carlo simulation.AF_a = annual raw, AF_ms = monthly smoothed, AF_msnv = monthly smoothed and filtered, AF_asnv = annual smoothed and filtered.:param MC: number of Monte Carlo iterations.:param lustr: 'gcp' (Global Carbon Project), 'han' (Houghton & Nassikas), or 'new' (This study):param FF_China: choose which FF scheme to use, China GCP ('GCP'), China Liu et al. (2015) ('LIU'), or China BP (2021):param RESPscheme: choose respiration scheme, normal ('stable', default) or increasing role of fire ('incfire'):param bootstrap: Apply bootstrapping for calculation of trend uncertainty interval (default=False).:param detrend: Remove trend before calculation, to isolate the error margin around 0 (default=False).:return:- MC_slope_median: median of found slopes over MonteCarlo iterations.- MC_slope_std: standard deviation of found slopes over MonteCarlo iterations.- MC_std_mean: mean of found standard deviations over MonteCarlo iterations.- MC_p_mean: mean of found p-values over MonteCarlo iterations.- MC_slope: Found slopes for all MonteCarlo iterations.- MC_std: Found standard deviations for all MonteCarlo iterations.- MC_p: Found p-values for all MonteCarlo iterations.- MC_AF: Total AF time series for all MonteCarlo iterations.- MC_interc: Found intercept for all MonteCarlo iterations.=== All results are returned for four data treatments ===:0 = annual raw ('AF_a') [Reported in paper Figure 3]1 = monthly smoothed ('AF_ms') [Not used in paper]2 = monthly smoothed and filtered ('AF_msnv') [Not used in paper]3 = annual smoothed and filtered ('AF_asnv') [Used for final trend estimates, reported in Table 1, Figure 3 and 4]'''if FF_China is None: FF_China = 'GCP'if RESPscheme is None: RESPscheme = 'stable'if bootstrap is True:fBts = 0.8  # Bootstrap window of at least 80% of time series.min_length_y = int(np.ceil(len(years) * fBts))  # at least fBts.min_length_m = int(np.ceil((len(t_m) - mavg)  * fBts))  # at least fBts.start = np.zeros(MC).astype(int)length = np.zeros(MC).astype(int)end = np.zeros(MC).astype(int)# Select used land use and fossil fuel time serieslu_tuple, ff_tuple = data_selector(lustr, FF_China, RESPscheme)lu, lu_m, lu_error, lu_error_m = lu_tupleFF, FF_m, FF_error, FF_error_m = ff_tupleAF_pre = calc_AF(lustr, FF_China=FF_China, RESPscheme=RESPscheme)[0]AF_a_trend = np.poly1d(np.polyfit(t_y, AF_pre[0], 1))(t_y)  # Determine Airborne fraction trend component.AF_ms_trend = np.poly1d(np.polyfit(t_m, AF_pre[1], 1))(t_m)AF_msnv_trend = np.poly1d(np.polyfit(t_m, AF_pre[2], 1))(t_m)AF_asnv_trend = np.poly1d(np.polyfit(t_y, AF_pre[3], 1))(t_y)print('Monte Carlo starting ... ')time0 = timer.time()AF_a = np.zeros((MC, len(years)))AF_ms = np.zeros((MC, len(t_m)))AF_msnv = np.zeros((MC, len(t_m)))AF_asnv = np.zeros((MC, len(years)))MC_a = np.zeros((4, MC))    # 4 dimensions are: [slope, intercept, p-value, stderr]MC_ms = np.zeros((4, MC))MC_msnv = np.zeros((4, MC))MC_asnv = np.zeros((4, MC))for mc in range(MC):FF_mc = FF + FF_error * np.random.randn(len(years))     # Apply random normally-distributed error.lu_mc = lu + lu_error * np.random.randn(len(years))dCO2_mc = dCO2 + dCO2_error * np.random.randn(len(years))FF_m_mc = FF_m + FF_error_m * np.random.randn(len(t_m))lu_m_mc = lu_m + lu_error_m * np.random.randn(len(t_m))dCO2_m_mc = dCO2_m + dCO2_error_m * np.random.randn(len(t_m))dCO2_s_mc = dCO2_s + dCO2_error_m * np.random.randn(len(t_m))dCO2_sv_mc = dCO2_sv + dCO2_error * np.random.randn(len(years))dCO2_sv_m_mc = dCO2_sv_m + dCO2_error_m * np.random.randn(len(t_m))# Calculate Airborne fractionAF_a[mc] = dCO2_mc / (FF_mc + lu_mc)                # annual rawAF_ms[mc] = dCO2_s_mc / (FF_m_mc + lu_m_mc)         # monthly smoothedAF_msnv[mc] = dCO2_sv_m_mc / (FF_m_mc + lu_m_mc)    # monthly smoothed and filteredAF_asnv[mc] = dCO2_sv_mc / (FF_mc + lu_mc)          # annual smoothed and filteredif detrend is True:AF_a[mc] = AF_a[mc] - AF_a_trend            # Remove time series trend.AF_ms[mc] = AF_ms[mc] - AF_ms_trendAF_msnv[mc] = AF_msnv[mc] - AF_msnv_trendAF_asnv[mc] = AF_asnv[mc] - AF_asnv_trendif bootstrap is True:length_y = np.random.randint(min_length_y, len(years)+1)    # bootstrap window lengthstart_y = np.random.randint(len(years) - length_y+1)        # bootstrap window start pointend_y = start_y + length_y                                  # bootstrap window end pointlength_m = np.random.randint(min_length_m, len(t_m) - mavg +1)      # Same, but monthly instead of annualstart_m = np.random.randint(edge, len(t_m) - edge - length_m +1)end_m = start_m + length_mmask_y = np.zeros(len(years)).astype(bool)mask_m = np.zeros(len(t_m)).astype(bool)mask_y[start_y:end_y] = True    # Bootstrap window mask, annual.mask_m[start_m:end_m] = True    # Bootstrap window mask, monthly.AF_a[mc][~mask_y] = np.nan      # Apply bootstrap mask to AF time series.AF_ms[mc][~mask_m] = np.nanAF_msnv[mc][~mask_m] = np.nanAF_asnv[mc][~mask_y] = np.nanlength[mc] = length_m   # store iterated bootstrap windows.start[mc] = start_mend[mc] = end_melif bootstrap is False:  # Make empty mask to skip bootstrapping.mask_y = np.zeros(len(years)).astype(bool)mask_m = np.zeros(len(t_m)).astype(bool)mask_y[:] = Truemask_m[edge:-edge] = True# Calculate trend in Airborne fraction time series.if trendcalc == 'abs':  # Calculate absolute trend.AF_a_reg = slopest(t_y[mask_y], AF_a[mc][mask_y], method=trendmethod)AF_ms_reg = slopest(t_m[mask_m], AF_ms[mc][mask_m], method=trendmethod)AF_msnv_reg = slopest(t_m[mask_m], AF_msnv[mc][mask_m], method=trendmethod)AF_asnv_reg = slopest(t_y[mask_y], AF_asnv[mc][mask_y], method=trendmethod)elif trendcalc == 'rgr':    # Calculate relative growth rate.AF_a_reg = slopest(t_y[mask_y], AF_a[mc][mask_y] / float(np.mean(AF_a[mc][mask_y])), method=trendmethod)AF_ms_reg = slopest(t_m[mask_m], AF_ms[mc][mask_m] / np.mean(AF_ms[mc][mask_m]), method=trendmethod)AF_msnv_reg = slopest(t_m[mask_m], AF_msnv[mc][mask_m] / np.mean(AF_msnv[mc][mask_m]), method=trendmethod)AF_asnv_reg = slopest(t_y[mask_y], AF_asnv[mc][mask_y] / float(np.mean(AF_asnv[mc][mask_y])), method=trendmethod)# Store regression results. Format: [slope, intercept, p-value, standard error]MC_a[:,mc] = [AF_a_reg[0]*uconv, AF_a_reg[1]*uconv, AF_a_reg[3]*1, AF_a_reg[4]*uconv]MC_ms[:,mc] = [AF_ms_reg[0]*uconv, AF_ms_reg[1]*uconv, AF_ms_reg[3]*1, AF_ms_reg[4]*uconv]MC_msnv[:,mc] = [AF_msnv_reg[0]*uconv, AF_msnv_reg[1]*uconv, AF_msnv_reg[3]*1, AF_msnv_reg[4]*uconv]MC_asnv[:,mc] = [AF_asnv_reg[0]*uconv, AF_asnv_reg[1]*uconv, AF_asnv_reg[3]*1, AF_asnv_reg[4]*uconv]# Calculate summary statistics over Monte Carlo iterations.MC_AF = (AF_a, AF_ms, AF_msnv, AF_asnv)MC_slope = np.array([MC_a[0], MC_ms[0], MC_msnv[0], MC_asnv[0]])MC_interc = np.array([MC_a[1], MC_ms[1], MC_msnv[1], MC_asnv[1]])MC_std = np.array([MC_a[3], MC_ms[3], MC_msnv[3], MC_asnv[3]])MC_p = np.array([MC_a[2], MC_ms[2], MC_msnv[2], MC_asnv[2]])MC_slope_median = np.mean(MC_slope, axis=1)     # median of slopeMC_slope_std = np.std(MC_slope, axis=1)   # std of slopeMC_std_mean = np.mean(MC_std, axis=1)   # mean of stderrMC_p_mean = np.mean(MC_p, axis=1)     # mean of p-valuetime1 = timer.time() - time0print('Done, duration = ' + str(time1))return MC_slope_median, MC_slope_std, MC_std_mean, MC_p_mean, MC_slope, MC_std, MC_p, MC_interc, MC_AF[0], MC_AF[1], MC_AF[2], MC_AF[3]def calc_AF_MonteCarlo_filemanager(filename):''' Saves or loads Monte-Carlo results for all different data scenarios.If zip file with filename already exists, previously saved results are loaded.If no zip file exists yet, the Monte-Carlo simulations are calculated for all different scenarios and saved into a zip file.:param filename: filename without path and without extension.:return: MCdict, dictionary collection with all run results.'''if (filename is not None) and os.path.isfile(filename + '.zip'):# Load pre-saved restuls.MCdict = OrderedDict()with ZipFile(filename + '.zip', mode='r') as archive:for keyn in ['gcp', 'han', 'new', 'gcp_s', 'han_s', 'new_s', 'new_b', 'new_c', 'new_d', 'new_e', 'new_f', 'gcp_dt', 'han_dt', 'new_dt']:ds_npz = np.load(io.BytesIO(archive.read(keyn+'.npz')))MCdict[keyn] = [ds_npz[filen] for filen in ['MC_slope_median', 'MC_slope_std', 'MC_std_mean', 'MC_p_mean', 'MC_slope', 'MC_std', 'MC_p', 'MC_interc', 'AF_a', 'AF_ms', 'AF_msnv', 'AF_asnv']]else:raise Warning('No pre-saved .zip file found with the name: %s, recalculating Monte-Carlo, Please note: this can take several minutes!' % filename)# Calculate and save results.MCdict = OrderedDict([('gcp', calc_AF_MonteCarlo(MC, 'gcp')),('han', calc_AF_MonteCarlo(MC, 'han')),('new', calc_AF_MonteCarlo(MC, 'new')),('gcp_s', calc_AF_MonteCarlo(MC, 'gcp', bootstrap=True)),('han_s', calc_AF_MonteCarlo(MC, 'han', bootstrap=True)),('new_s', calc_AF_MonteCarlo(MC, 'new', bootstrap=True)),('new_b', calc_AF_MonteCarlo(MC, 'new', FF_China='LIU', RESPscheme='stable', bootstrap=True)),('new_c', calc_AF_MonteCarlo(MC, 'new', FF_China='GCP', RESPscheme='incfire', bootstrap=True)),('new_d', calc_AF_MonteCarlo(MC, 'new', FF_China='LIU', RESPscheme='incfire', bootstrap=True)),('new_e', calc_AF_MonteCarlo(MC, 'new', FF_China='BP', RESPscheme='stable', bootstrap=True)),('new_f', calc_AF_MonteCarlo(MC, 'new', FF_China='BP', RESPscheme='incfire', bootstrap=True)),('gcp_dt', calc_AF_MonteCarlo(MC, 'gcp', detrend=True)),('han_dt', calc_AF_MonteCarlo(MC, 'han', detrend=True)),('new_dt', calc_AF_MonteCarlo(MC, 'new', detrend=True)),])# Convert dtype from Float64 to Float32 for reduced file size.for keyn in MCdict.keys():MCdict[keyn] = [dicti.astype(np.float32) for dicti in MCdict[keyn]]# Save results into .npz files and then pack them all into one .zip file.for keyn in MCdict.keys():ds = MCdict[keyn]np.savez(filename + '_%s' % keyn, MC_slope_median=ds[0], MC_slope_std=ds[1], MC_std_mean=ds[2], MC_p_mean=ds[3], MC_slope=ds[4], MC_std=ds[5], MC_p=ds[6], MC_interc=ds[7], AF_a=ds[8], AF_ms=ds[9], AF_msnv=ds[10], AF_asnv=ds[11])zipObj = ZipFile(filename + '.zip', 'w')for keyn in MCdict.keys():zipObj.write(filename + '_%s.npz' % keyn, keyn+'.npz')   # Pack individual results into single .zip file.os.remove(filename + '_%s.npz' % keyn)      # Remove individual files.zipObj.close()return MCdictMC = 10000  # number of Monte Carlo iterations.
MCdict = calc_AF_MonteCarlo_filemanager(wdir + 'Marle_et_al_Nature_AirborneFraction_MC%s_MK_ts_TREND%s' % (MC, trendcalc))def plot_Figure3(fign, lustr, FFchinaplot='LIU', filename=None):''' Plot paper Figure 3:param fign: figure number:param lustr: 'gcp' (Global Carbon Project), 'han' (Houghton & Nassikas), or 'new' (This study):param FFchinaplot: choose which FF scheme to use, China GCP ('GCP'), China Liu et al. (2015) ('LIU'), or China BP (2021):param filename: filename of saved figure (.pdf format). If no filename, figure is only displayed and not saved.:return: Figure 3'''fontsize = 8fontsize_legend = 6.5fontsize_boxtext = 7fontsize_panellabel = 8fig = plt.figure(fign, (183*mm,70*mm))ax = fig.add_subplot(121)if lustr == 'gcp':AFdat = AFgcpMCdat = MCdict['gcp']MCdats = MCdict['gcp_s']AFERRdat = AFERRgcpAFcol = CgcpAFstr = 'GCP'pltlabels = ['a','b']elif lustr == 'han':AFdat = AFhanMCdat = MCdict['han']MCdats = MCdict['han_s']AFERRdat = AFERRhanAFcol = ChanAFstr = 'H&N'pltlabels = ['c', 'd']elif lustr == 'new':AFdat = AFnewMCdat = MCdict['new']MCdats = MCdict['new_s']AFERRdat = AFERRnewAFcol = CnewAFstr = 'This study'pltlabels = ['e', 'f']t_plot = t_yt_len = len(years)pl1, = ax.plot(t_plot, amean(AFdat[0]), c='grey')       # Plot AF time seriespl2, = ax.plot(t_plot, amean(AFdat[iset]), c=AFcol)if lustr in ['gcp', 'new']: colorfillalpha = 0.2elif lustr == 'han':        colorfillalpha = 0.3    # The yellow colors requires a slightly higher alpha for the same visual effect.ax.fill_between(t_plot, amean(AFdat[0] - AFERRdat[0]), amean(AFdat[0] + AFERRdat[0]), facecolor='grey', alpha=0.2)  # Plot AF uncertainty rangeax.fill_between(t_plot, amean(AFdat[iset] - AFERRdat[iset]), amean(AFdat[iset] + AFERRdat[iset]), facecolor=AFcol, alpha=colorfillalpha)ax.plot(t_plot, np.poly1d(np.polyfit(t_plot, amean(AFdat[iset]),1))(t_plot), c=AFcol)   # Plot AF trend lineMC_mask = np.where(~np.isnan(MCdats[8+iset]), 1, MCdats[8+iset])                  # Remove bootstrap no-data edges.MC_line = (MCdats[4][iset] * (t_plot * MC_mask).T + MCdats[7][iset]).T / uconvMC_linemean = np.nanmedian(MC_line, axis=0)MC_linestd = np.nanstd(MC_line, axis=0)MC_linemean_fit = np.poly1d(np.polyfit(t_plot[2:-2], MC_linemean[2:-2], 3))(t_plot)MC_linestd_fit = np.poly1d(np.polyfit(t_plot[2:-2], MC_linestd[2:-2], 3))(t_plot)if lustr in ['gcp', 'han']: dashlinealpha = 0.7elif lustr == 'new':        dashlinealpha = 0.9pl3, = ax.plot(t_plot, MC_linemean_fit - MC_linestd_fit, color=AFcol, linestyle='--', alpha=dashlinealpha)  # Plot AF trend line uncertaintyax.plot(t_plot, MC_linemean_fit + MC_linestd_fit, color=AFcol, linestyle='--', alpha=dashlinealpha)p_dat = MCdat[3][iset]if lustr in ['gcp', 'han']:Pdat = (np.sum([MCdat[4][iset] > 0.0])/float(MC)) # Probability that trend is positivePdat2 = (np.sum([MCdat[6][iset] < 0.05])/float(MC)) # Probability that trend is significantPdats = (np.sum([MCdats[4][iset] > 0.0])/float(MC)) # Probability that trend is positivePdats2 = (np.sum([MCdats[6][iset] < 0.05])/float(MC)) # Probability that trend is significantelif lustr == 'new':Pdat = (np.sum([MCdat[4][iset] < 0.0])/float(MC)) # Probability that trend is negativePdat2 = (np.sum([MCdat[6][iset] < 0.05])/float(MC)) # Probability that trend is significantPdats = (np.sum([MCdats[4][iset] < 0.0])/float(MC)) # Probability that trend is negativePdats2 = (np.sum([MCdats[6][iset] < 0.05])/float(MC)) # Probability that trend is significantdata_list = [MCdict['gcp'][4][iset], MCdict['han'][4][iset], MCdict['new'][4][iset], MCdict['gcp_dt'][4][iset], MCdict['han_dt'][4][iset], MCdict['new_dt'][4][iset]]pval = np.zeros((6,6))# Example: pval = scipy.stats.t.sf(np.abs(3.0914), 8)*2 (Source: https://www.youtube.com/watch?v=myL_qzuLHTQ)for i, Di in enumerate(data_list):for j, Dj in enumerate(data_list):diff_slope = np.mean(Di) - np.mean(Dj)diff_std = np.sqrt(np.std(Di) ** 2 + np.std(Dj) ** 2)pval[i,j] = scipy.stats.t.sf(np.abs(diff_slope / diff_std), t_len - 4) * 2if trendcalc == 'rgr':spacer = 0.02legtext1 = '%s, raw. Mean AF = %.2f' % (AFstr, np.mean(AFdat[0]))legtext2 = '%s: %.2f $\pm$ %.2f %% yr$^{-1}$' % ('Filter', MCdat[0][iset], MCdat[1][iset])legtext3 = '%s: %.2f $\pm$ %.2f %% yr$^{-1}$' % ('Filter+Bootstrap', MCdats[0][iset], MCdats[1][iset])elif trendcalc == 'abs':spacer = 0.001legtext1 = '%s, raw, Mean AF = %.2f' % (AFstr, np.mean(AFdat[0]))legtext2 = '%s: %.3f $\pm$ %.3f decade$^{-1}$' % ('Filter', MCdat[0][iset], MCdat[1][iset])legtext3 = '%s: %.3f $\pm$ %.3f decade$^{-1}$' % ('Filter+Bootstrap', MCdats[0][iset], MCdats[1][iset])ax.legend([pl1,pl2,pl3], [legtext1, legtext2, legtext3], fontsize=fontsize_legend, loc='upper right', bbox_to_anchor=(1.01,1.02), labelspacing=0.05, borderpad=0.25, handlelength=1.5, framealpha=1)ax.text(0.04, 0.93, pltlabels[0], transform=ax.transAxes, fontsize=fontsize_panellabel, weight='bold')ax.set_xlabel('Year', fontsize=fontsize)ax.set_ylabel('Airborne fraction (unitless)', fontsize=fontsize)ax.set_xlim([year0-1, year1+1])ax.set_ylim([0.1,0.9])ax.grid(True)ax.set_axisbelow(True)ax.tick_params(axis='both', which='major', labelsize=fontsize)ax = fig.add_subplot(122)width_bp = 0.8if lustr in ['gcp', 'han']:bp1 = ax.boxplot(MCdat[4][0], positions=[4], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp2 = ax.boxplot(MCdat[4][iset], positions=[3], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp3 = ax.boxplot(MCdats[4][0], positions=[2], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp4 = ax.boxplot(MCdats[4][iset], positions=[1], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])for b, bplot in enumerate((bp1, bp2, bp3, bp4)):bplot['boxes'][0].set(facecolor='white')if b in [0,2]:bplot['boxes'][0].set(edgecolor=rgba2rgb(np.array(pltc.to_rgba(AFcol, 0.3))*255)/255.)ylim = [0.0, 5]bploc_wisk = np.reshape([item.get_xdata()[1] for bp in [bp1, bp2, bp3, bp4] for item in bp['whiskers']], (4, 2))  # [:,0] is left, [:,1] is right.bploc_box = np.reshape([item.get_xdata()[0] for bp in [bp1, bp2, bp3, bp4] for item in bp['whiskers']], (4, 2))  # [:,0] is left, [:,1] is right.if lustr == 'gcp':ax.text(bploc_wisk[0, 0] - spacer, 4, 'Raw', color='grey', va='center', ha='right', bbox=dict(facecolor='white', pad=0, edgecolor='none'), zorder=100, fontsize=fontsize_boxtext)ax.text(bploc_wisk[1, 0] - spacer, 3, 'Filter', color='grey', va='center', ha='right', bbox=dict(facecolor='white', pad=2, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[2, 0] - spacer, 2, 'Bootstrap', color='grey', va='center', ha='right', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[3, 0] - spacer, 1, 'Filter+Bootstrap', color='grey', va='center', ha='right', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)elif lustr == 'han':ax.text(bploc_wisk[0, 1] + spacer, 4, 'Raw', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), zorder=100, fontsize=fontsize_boxtext)ax.text(bploc_wisk[1, 1] + spacer, 3, 'Filter', color='grey', va='center', bbox=dict(facecolor='white', pad=2, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[2, 1] + spacer, 2, 'Bootstrap', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[3, 1] + spacer, 1, 'Filter+Bootstrap', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)elif lustr == 'new':bp1 = ax.boxplot(MCdat[4][0], positions=[8], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5, 95])bp2 = ax.boxplot(MCdat[4][iset], positions=[7], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5, 95])bp3 = ax.boxplot(MCdats[4][0], positions=[6], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5, 95])bp4 = ax.boxplot(MCdats[4][iset], positions=[5], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5, 95])if FFchinaplot == 'LIU':bp5 = ax.boxplot(MCdict['new_b'][4][iset], positions=[3], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp6 = ax.boxplot(MCdict['new_c'][4][iset], positions=[2], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp7 = ax.boxplot(MCdict['new_d'][4][iset], positions=[1], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])elif FFchinaplot == 'BP':bp5 = ax.boxplot(MCdict['new_e'][4][iset], positions=[3], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp6 = ax.boxplot(MCdict['new_c'][4][iset], positions=[2], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])bp7 = ax.boxplot(MCdict['new_f'][4][iset], positions=[1], vert=False, sym='', widths=width_bp, patch_artist=True, boxprops=dict(color=AFcol), whis=[5,95])for b, bplot in enumerate((bp1, bp2, bp3, bp4, bp5, bp6, bp7)):bplot['boxes'][0].set(facecolor='white')if b in [0,2]:bplot['boxes'][0].set(edgecolor=rgba2rgb(np.array(pltc.to_rgba(AFcol, 0.3))*255)/255.)ylim = [-.05, 9]bploc_wisk = np.reshape([item.get_xdata()[1] for bp in [bp1, bp2, bp3, bp4, bp5, bp6, bp7] for item in bp['whiskers']], (7, 2))  # [:,0] is left, [:,1] is right.bploc_box = np.reshape([item.get_xdata()[0] for bp in [bp1, bp2, bp3, bp4, bp5, bp6, bp7] for item in bp['whiskers']], (7, 2))  # [:,0] is left, [:,1] is right.ax.text(bploc_wisk[0, 1] + spacer, 8, 'Raw', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), zorder=100, fontsize=fontsize_boxtext)ax.text(bploc_wisk[1, 1] + spacer, 7, 'Filter', color='grey', va='center', bbox=dict(facecolor='white', pad=2, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[2, 1] + spacer, 6, 'Bootstrap', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[3, 1] + spacer, 5, 'Filter+Bootstrap', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[4, 1] + spacer, 3, 'Lower FF emissions China', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), zorder=100, fontsize=fontsize_boxtext)ax.text(bploc_wisk[5, 1] + spacer, 2, 'Increasing role of fire', color='grey', va='center', bbox=dict(facecolor='white', pad=2, edgecolor='none'), fontsize=fontsize_boxtext)ax.text(bploc_wisk[6, 1] + spacer, 1, 'Combined adjustments', color='grey', va='center', bbox=dict(facecolor='white', pad=0, edgecolor='none'), fontsize=fontsize_boxtext)ax.axvline(x=0, c='black', alpha=0.6, zorder=0)ax.set_xlim([-0.035,0.035])ax.get_yaxis().set_ticks([])ax.set_ylim(ylim)ax.grid(True)ax.set_axisbelow(True)ax.tick_params(axis='both', which='major', labelsize=fontsize)if lustr == 'gcp':textstr = 'GCP vs. H&N: p = %.2f\nGCP vs. This study: p = %.2f\nGCP vs. no trend: p = %.2f' % (pval[0,1], pval[0,2], pval[0,3])elif lustr == 'han':textstr = 'H&N vs. GCP: p = %.2f\nH&N vs. This study: p = %.2f\nH&N vs. no trend: p = %.2f' % (pval[0,1], pval[1,2], pval[1,4])elif lustr == 'new':textstr = 'This study vs. GCP: p = %.2f\nThis study vs. H&N: p = %.2f\nThis study vs. no trend: p = %.2f' % (pval[0,2], pval[1,2], pval[2,5])ax.text(0.015, 0.93, pltlabels[1], transform=ax.transAxes, fontsize=fontsize_panellabel, weight='bold')if trendcalc == 'rgr':ax.set_xlabel('Relative growth rate, RGR (% yr$^{-1}$)', fontsize=fontsize)elif trendcalc == 'abs':ax.set_xlabel('Trend (decade$^{-1}$)', fontsize=fontsize)plt.tight_layout()if filename:plt.savefig(filename + '.pdf', bbox_inches='tight')else:plt.show()
plot_Figure3(3, lustr='gcp', filename=wdir + 'Marle_et_al_Nature_AirborneFraction_Figure3_MC%s_ab' % MC)
plot_Figure3(4, lustr='han', filename=wdir + 'Marle_et_al_Nature_AirborneFraction_Figure3_MC%s_cd' % MC)
plot_Figure3(5, lustr='new', filename=wdir + 'Marle_et_al_Nature_AirborneFraction_Figure3_MC%s_ef' % MC)def plot_Table1():''' Calculate Table 1 from paper with trend significance values.:return: Table 1, dataframe containing significance values.'''datalist = [MCdict['gcp'], MCdict['han'], MCdict['new'], MCdict['gcp_s'], MCdict['han_s'], MCdict['new_s']]Ppos = np.zeros(len(datalist))Pneg = np.zeros(len(datalist))P2 = np.zeros(len(datalist))Ppos2 = np.zeros(len(datalist))Pneg2 = np.zeros(len(datalist))for i, MCdat in enumerate(datalist):Ppos[i] = np.sum([MCdat[4][iset] > 0.0]) / float(MC) # Probability P of a positive trendPneg[i] = np.sum([MCdat[4][iset] < 0.0]) / float(MC) # Probability P of a negative trendP2[i] = np.sum([MCdat[6][iset] < 0.05])/float(MC)      # Probability P of a significant trend (both positive and negative)Ppos2[i] = np.sum([(MCdat[4][iset] > 0.0) & (MCdat[6][iset] < 0.05)]) / float(MC)  # Probability P of a significant positive trendPneg2[i] = np.sum([(MCdat[4][iset] < 0.0) & (MCdat[6][iset] < 0.05)]) / float(MC)  # Probability P of a significant negative trenddframe = np.array([[Ppos[3],Pneg[3],Ppos2[3],Pneg2[3],Ppos2[3]/(Ppos2[3]+Pneg2[3]),Pneg2[3]/(Ppos2[3]+Pneg2[3])],   # Store results in dataframe.[Ppos[4],Pneg[4],Ppos2[4],Pneg2[4],Ppos2[4]/(Ppos2[4]+Pneg2[4]),Pneg2[4]/(Ppos2[4]+Pneg2[4])],[Ppos[5],Pneg[5],Ppos2[5],Pneg2[5],Ppos2[5]/(Ppos2[5]+Pneg2[5]),Pneg2[5]/(Ppos2[5]+Pneg2[5])]])dframe = pd.DataFrame(dframe, index=['GCP','H&N','This study'], columns=['Positive','Negative','Positive p<0.05','Negative p<0.05','p<0.05 fraction positive','p<0.05 fraction negative'])return dframe
ds_table1 = plot_Table1()
print(ds_table1.to_string())def calc_AF_MonteCarlo_ARR(MC, size, filename=None, FF_China=None, RESPscheme=None, bootstrap=True):''' Calculation of the Airborne fraction using a Monte Carlo simulation, based on the linear approximations of the LU time series.For a (size+1 x size+1) array, the AF is calculated for a range of intercepts and slopes.Three additional intercepts and slopes are added; those are the linear fits of the gcp, han, and new LU time series.Those three end up in the extended diagonal of the results arrays. They can be extracted using indices [size+1,size+1], [size+2,size+2], and [size+3,size+3]AF_a = annual raw, AF_ms = monthly smoothed, AF_msnv = monthly smoothed and filtered, AF_asnv = annual smoothed and filtered.:param MC: number of Monte Carlo iterations.:param size: size of data array.:param filename: filename of saved result (saved in .npz format) [str]:param FF_China: choose which FF scheme to use, China GCP ('GCP'), China Liu et al. (2015) ('LIU'), or China BP (2021):param RESPscheme: choose respiration scheme, normal ('stable', default) or increasing role of fire ('incfire'):param bootstrap: Apply bootstrapping for calculation of trend uncertainty interval (default=True).:return:- MC_slope_median: median of found slopes over MonteCarlo iterations.- MC_slope_std: standard deviation of found slopes over MonteCarlo iterations.- MC_std_mean: mean of found standard deviations over MonteCarlo iterations.- MC_p_mean: mean of found p-values over MonteCarlo iterations.=== All results are returned for four data treatments ===:0 = annual raw ('AF_a') [Reported in paper Figure 3]1 = monthly smoothed ('AF_ms') [Not used in paper]2 = monthly smoothed and filtered ('AF_msnv') [Not used in paper]3 = annual smoothed and filtered ('AF_asnv') [Used for final trend estimates, reported in Table 1, Figure 3 and 4]'''if FF_China is None: FF_China = 'GCP'if RESPscheme is None: RESPscheme = 'stable'if bootstrap is True:fBts = 0.8  # Bootstrap window of at least 80% of time series.min_length_y = int(np.ceil(len(years) * fBts))  # at least fBts.min_length_m = int(np.ceil((len(t_m) - mavg)  * fBts))  # at least fBts.start = np.zeros(MC).astype(int)length = np.zeros(MC).astype(int)end = np.zeros(MC).astype(int)if (filename is not None) and os.path.isfile(filename + '.npz'):ds = np.load(filename + '.npz')MC_slope_median = ds['MC_slope_median'][:]MC_slope_std = ds['MC_slope_std'][:]MC_std_mean = ds['MC_std_mean'][:]MC_p_mean = ds['MC_p_mean'][:]else:raise Warning('No pre-saved .npz file found with the name: %s, recalculating Monte-Carlo, Please note: this can take up to 30 hours!' % filename)# Select used land use and fossil fuel time series_, ff_tuple = data_selector('gcp', FF_China=FF_China, RESPscheme=RESPscheme)    # 'gcp' is a placeholder here, not used. Only FF is loaded.FF, FF_m, FF_error, FF_error_m = ff_tupleLUgcp_slope, _ = np.polyfit(t_y, LUgcp, 1)  # determine slope and b for lu datasetsLUhan_slope, _ = np.polyfit(t_y, LUhan, 1)LUnew_slope, _ = np.polyfit(t_y, LUnew, 1)LUgcp_mean = np.mean(LUgcp)  # determine mean for lu datasetsLUhan_mean = np.mean(LUhan)LUnew_mean = np.mean(LUnew)LUgcp_std = np.std(LUgcp)LUhan_std = np.std(LUhan)LUnew_std = np.std(LUnew)a = np.linspace(-0.005, 0.025, size+1)a = np.hstack((a, LUgcp_slope, LUhan_slope, LUnew_slope))  # add 3 linear lines with slope of lu datasetsm = np.linspace(0.8, 1.5+(1/100.), size+1)m = np.hstack((m, LUgcp_mean, LUhan_mean, LUnew_mean))fsize = size+1+3    # plus 1 for symmetry, plus 3 for 3 LU datasets.mesha = np.zeros((fsize,fsize))meshm = np.zeros((fsize,fsize))MC_slope_median = np.zeros((4,fsize,fsize))MC_slope_std = np.zeros((4,fsize,fsize))MC_std_mean = np.zeros((4,fsize,fsize))MC_p_mean = np.zeros((4,fsize,fsize))for i in [0,51,52,53]: #range(fsize):for j in [0,51,52,53]: #range(fsize):print('i = '+str(i)+' / j = '+str(j) + ' ... ')time0 = timer.time()mesha[i,j] = a[i]meshm[i,j] = m[j]lu = a[i] * (np.arange(len(years)) - len(years)/2.0) + m[j]lu_m = tomonthly(lu)   # create monthly series by interpolation of yearly serieslu_error = lu * 0.5         # LU errors are set at 50% for all three datasets.lu_error_m = lu_m * 0.5MC_a = np.zeros((4, MC))    # 4 dimensions are: [slope, intercept, p-value, stadard error]MC_ms = np.zeros((4, MC))MC_msnv = np.zeros((4, MC))MC_asnv = np.zeros((4, MC))for mc in range(MC):FF_mc = FF + FF_error * np.random.randn(len(years))     # Apply random normally-distributed error.lu_mc = lu + lu_error * np.random.randn(len(years))dCO2_mc = dCO2 + dCO2_error * np.random.randn(len(years))FF_m_mc = FF_m + FF_error_m * np.random.randn(len(t_m))lu_m_mc = lu_m + lu_error_m * np.random.randn(len(t_m))dCO2_m_mc = dCO2_m + dCO2_error_m * np.random.randn(len(t_m))dCO2_s_mc = dCO2_s + dCO2_error_m * np.random.randn(len(t_m))dCO2_sv_mc = dCO2_sv + dCO2_error * np.random.randn(len(years))dCO2_sv_m_mc = dCO2_sv_m + dCO2_error_m * np.random.randn(len(t_m))# Calculate Airborne fractionAF_a = dCO2_mc / (FF_mc + lu_mc)                # annual rawAF_ms = dCO2_s_mc / (FF_m_mc + lu_m_mc)         # monthly smoothedAF_msnv = dCO2_sv_m_mc / (FF_m_mc + lu_m_mc)    # monthly smoothed and filteredAF_asnv = dCO2_sv_mc / (FF_mc + lu_mc)          # annual smoothed and filteredif bootstrap is True:length_y = np.random.randint(min_length_y, len(years)+1)    # bootstrap window lengthstart_y = np.random.randint(len(years) - length_y+1)        # bootstrap window start pointend_y = start_y + length_y                                  # bootstrap window end pointlength_m = np.random.randint(min_length_m, len(t_m) - mavg +1)      # Same, but monthly instead of annualstart_m = np.random.randint(edge, len(t_m) - edge - length_m +1)end_m = start_m + length_mmask_y = np.zeros(len(years)).astype(bool)mask_m = np.zeros(len(t_m)).astype(bool)mask_y[start_y:end_y] = True    # Bootstrap window mask, annual.mask_m[start_m:end_m] = True    # Bootstrap window mask, monthly.AF_a[~mask_y] = np.nan      # Apply bootstrap mask to AF time series.AF_ms[~mask_m] = np.nanAF_msnv[~mask_m] = np.nanAF_asnv[~mask_y] = np.nanelif bootstrap is False:  # Make empty mask to skip bootstrapping.mask_y = np.zeros(len(years)).astype(bool)mask_m = np.zeros(len(t_m)).astype(bool)mask_y[:] = Truemask_m[edge:-edge] = True# Calculate trend in Airborne fraction time series.if trendcalc == 'abs':  # Calculate absolute trend.AF_a_reg = slopest(t_y[mask_y], AF_a[mask_y], method=trendmethod)AF_ms_reg = slopest(t_m[mask_m], AF_ms[mask_m], method=trendmethod)AF_msnv_reg = slopest(t_m[mask_m], AF_msnv[mask_m], method=trendmethod)AF_asnv_reg = slopest(t_y[mask_y], AF_asnv[mask_y], method=trendmethod)elif trendcalc == 'rgr':    # Calculate relative growth rate.AF_a_reg = slopest(t_y[mask_y], AF_a[mask_y] / float(np.mean(AF_a[mask_y])), method=trendmethod)AF_ms_reg = slopest(t_m[mask_m], AF_ms[mask_m] / np.mean(AF_ms[mask_m]), method=trendmethod)AF_msnv_reg = slopest(t_m[mask_m], AF_msnv[mask_m] / np.mean(AF_msnv[mask_m]), method=trendmethod)AF_asnv_reg = slopest(t_y[mask_y], AF_asnv[mask_y] / float(np.mean(AF_asnv[mask_y])), method=trendmethod)# Store regression results. Format: [slope, intercept, p-value, standard error]MC_a[:,mc] = [AF_a_reg[0]*uconv, AF_a_reg[1]*uconv, AF_a_reg[3]*1, AF_a_reg[4]*uconv]MC_ms[:,mc] = [AF_ms_reg[0]*uconv, AF_ms_reg[1]*uconv, AF_ms_reg[3]*1, AF_ms_reg[4]*uconv]MC_msnv[:,mc] = [AF_msnv_reg[0]*uconv, AF_msnv_reg[1]*uconv, AF_msnv_reg[3]*1, AF_msnv_reg[4]*uconv]MC_asnv[:,mc] = [AF_asnv_reg[0]*uconv, AF_asnv_reg[1]*uconv, AF_asnv_reg[3]*1, AF_asnv_reg[4]*uconv]MC_slope = np.array([MC_a[0], MC_ms[0], MC_msnv[0], MC_asnv[0]])MC_std = np.array([MC_a[3], MC_ms[3], MC_msnv[3], MC_asnv[3]])MC_p = np.array([MC_a[2], MC_ms[2], MC_msnv[2], MC_asnv[2]])# Calculate summary statistics over Monte Carlo iterations.MC_slope_median[:,i,j] = np.median(MC_slope, axis=1)     # median of slopeMC_slope_std[:,i,j] = np.std(MC_slope, axis=1)   # std of slopeMC_std_mean[:,i,j] = np.mean(MC_std, axis=1)   # mean of stderrMC_p_mean[:,i,j] = np.mean(MC_p, axis=1)     # mean of p-valuetime1 = timer.time() - time0print('Done, duration = ' + str(time1))print('Monte carlo Finished')if filename is not None:np.savez(filename, MC_slope_median=MC_slope_median, MC_slope_std=MC_slope_std, MC_std_mean=MC_std_mean, MC_p_mean=MC_p_mean)return MC_slope_median, MC_slope_std, MC_std_mean, MC_p_meanMC = 1000
size = 50
MCarr = calc_AF_MonteCarlo_ARR(MC, size, filename=wdir + 'Marle_et_al_Nature_AirborneFraction_MC%s_MK_run%sx%s_TREND%s' % (MC, size, size, trendcalc))LINgcp = np.array(MCarr)[:,:,size+1,size+1]    # result for linear fit of GCP time series.
LINhan = np.array(MCarr)[:,:,size+2,size+2]    # result for linear fit of Hougthon time series.
LINnew = np.array(MCarr)[:,:,size+3,size+3]    # result for linear fit of This study time series.
ARR = np.array(MCarr)[:,:,:size+1,:size+1] # result array for range of intercepts and slopes.def plot_Figure4(fign, filename=None):''' Plot paper Figure 4:param fign: figure number:param filename: filename of saved figure (.pdf format). If no filename, figure is only displayed and not saved.:return: Figure 4'''fontsize = 7fontsize_legend = 5.5if trendcalc == 'rgr':clevels = np.linspace(-0.5,0.5,11)elif trendcalc == 'abs':clevels = np.linspace(-0.02,0.02,11)MC_slope_median = ARR[0]MC_slope_std = ARR[1]MC_std_mean = ARR[2]MC_p_mean = ARR[3]a = np.linspace(-0.005, 0.025, size + 1)m = np.linspace(0.8, 1.5 + (1 / 100.), size + 1)mesha = np.zeros((size+1, size+1))meshm = np.zeros((size+1, size+1))for i in range(size+1):for j in range(size+1):mesha[i,j] = a[i]meshm[i,j] = m[j]LUgcp_slope, _ = np.polyfit(t_y, LUgcp, 1)  # determine slope and b for lu datasetsLUhan_slope, _ = np.polyfit(t_y, LUhan, 1)LUnew_slope, _ = np.polyfit(t_y, LUnew, 1)LUgcp_mean = np.mean(LUgcp)  # determine mean for lu datasetsLUhan_mean = np.mean(LUhan)LUnew_mean = np.mean(LUnew)# Create figurefig = plt.figure(fign, figsize=(89*mm,89*0.75*mm))ax = fig.add_subplot(111)d = size/2.5    # For visualization; reducing the amount of corner points smoothens the lines.d = size/1.5mesha_plot = scipy.ndimage.zoom(mesha, 1/d)meshm_plot = scipy.ndimage.zoom(meshm, 1/d)data_plot = scipy.ndimage.zoom(MC_slope_median[iset][:size+1,:size+1], 1/d)p = ax.contourf(mesha_plot, meshm_plot, data_plot, levels=clevels, vmin=clevels[0], vmax=clevels[-1], cmap=cmap)c = ax.contour(mesha_plot, meshm_plot, data_plot, colors='black', linestyles='--', alpha=0.0)   # Dummy plot to retrieve linezero_line = c.collections[4].get_paths()[0].verticesfitline_zero = np.poly1d(np.polyfit(zero_line[:,0], zero_line[:,1] ,1))ax.plot(a, fitline_zero(a), c='black', linewidth=1.2)slope_std_0 = np.mean(MC_slope_std[iset][(MC_slope_median[iset] > -0.001) & (MC_slope_median[iset] < 0.001)])l_ERR_upper = (MC_slope_median[iset] > slope_std_0).astype(int)l_ERR_lower = (MC_slope_median[iset] < -slope_std_0).astype(int)l_ERR_upper_arr = scipy.ndimage.interpolation.zoom(l_ERR_upper.astype(float), 2, order=1)l_ERR_lower_arr = scipy.ndimage.interpolation.zoom(l_ERR_lower.astype(float), 2, order=1)l_ERR_upper_arr = np.reshape(l_ERR_upper_arr, (51,2,51,2)).mean(1).mean(2)l_ERR_lower_arr = np.reshape(l_ERR_lower_arr, (51,2,51,2)).mean(1).mean(2)l_ERR_upper_arr = np.isclose(l_ERR_upper_arr, np.full((51, 51), 0.5), atol=0.45)l_ERR_lower_arr = np.isclose(l_ERR_lower_arr, np.full((51, 51), 0.5), atol=0.45)ERRupper_fit = np.poly1d(np.polyfit(mesha[l_ERR_upper_arr], meshm[l_ERR_upper_arr], 1))ERRlower_fit = np.poly1d(np.polyfit(mesha[l_ERR_lower_arr], meshm[l_ERR_lower_arr], 1))ax.plot(a, ERRupper_fit(a), color='black', linestyle='--', alpha=0.8, linewidth=1.2)ax.plot(a, ERRlower_fit(a), color='black', linestyle='--', alpha=0.8, linewidth=1.2)#ax.scatter([LUgcp_slope, LUhan_slope, LUnew_slope], [LUgcp_mean, LUhan_mean, LUnew_mean], color='black', s=50)ax.scatter([LUgcp_slope], [LUgcp_mean], color=Cgcp, s=25, edgecolors='black', linewidth=1.0, zorder=100)ax.scatter([LUhan_slope], [LUhan_mean], color=Chan, s=25, edgecolors='black', linewidth=1.0, zorder=100)ax.scatter([LUnew_slope], [LUnew_mean], color=Cnew, s=25, edgecolors='black', linewidth=1.0, zorder=100)# Set axes#ax.xaxis.set_tick_params(pad=10)ax.set_xlim(np.min(mesha), np.max(mesha)) #-0.001)ax.set_ylim(np.min(meshm), 1.5) #np.max(meshm))ax.set_adjustable('box')ax.grid(True)ax.tick_params(axis='both', which='major', labelsize=fontsize)ax.set_xlabel('Slope of LULCC emissions (Pg C yr$^{-2}$)', fontsize=fontsize)ax.set_ylabel('Average of LULCC emissions (Pg C yr$^{-1}$)', fontsize=fontsize)if trendcalc == 'rgr':cb = fig.colorbar(p, ticks=clevels)cb.set_label('Relative growth rate, RGR (% yr$^{-1}$)', size=fontsize)elif trendcalc == 'abs':cb = fig.colorbar(p, ticks=clevels)cb.set_label('Trend (decade$^{-1}$)', size=fontsize)ax.set_xticks([-0.005,0.005,0.015,0.025])cb.ax.tick_params(labelsize=fontsize)ax.xaxis.set_minor_locator(MultipleLocator(0.005))# Add scatter labelst1 = ax.text(LUgcp_slope+0.001, LUgcp_mean, u'GCP, Friedlingstein et al. (2020)', fontsize=fontsize_legend)t2 = ax.text(LUhan_slope+0.009, LUhan_mean+0.025, 'Houghton & Nassikas (2017)', verticalalignment='bottom', horizontalalignment='right', fontsize=fontsize_legend)t3 = ax.text(LUnew_slope-0.001, LUnew_mean, 'This study', verticalalignment='top', horizontalalignment='right', fontsize=fontsize_legend)t1.set_bbox(dict(facecolor='white', alpha=1.0, edgecolor='grey', linewidth=0.9, pad=2.0))t2.set_bbox(dict(facecolor='white', alpha=1.0, edgecolor='grey', linewidth=0.9, pad=2.0))t3.set_bbox(dict(facecolor='white', alpha=1.0, edgecolor='grey', linewidth=0.9, pad=2.0))plt.tight_layout()fig.subplots_adjust(left=0.14, right=0.88)if filename:plt.savefig(filename + '.pdf', bbox_inches='tight')else:plt.show()
plot_Figure4(6, filename=wdir + 'Marle_et_al_Nature_AirborneFraction_Figure4_MC%s' % MC)print('End of script.')
http://www.lryc.cn/news/455747.html

相关文章:

  • 处理 Vue3 中隐藏元素刷新闪烁问题
  • 【MySQL】数据目录迁移
  • 【项目安全设计】软件系统安全设计规范和标准(doc原件)
  • INS淡绿色风格人像街拍Lr调色教程,手机滤镜PS+Lightroom预设下载!
  • python 实现最小路径和算法
  • Vue3实现动态菜单功能
  • Qt+VS2019+大恒相机相机回调方式总结
  • Python库pandas之六
  • [C++]使用纯opencv部署yolov11-seg实例分割onnx模型
  • PAT甲级-1122 Hamiltonian Cycle
  • Java 插入排序
  • 随机掉落的项目足迹:Vue3中vite.config.ts配置代理服务器解决跨域问题
  • C++笔记之标准库和boost库中bind占位符_1的写法差异
  • 二分查找
  • 关注、取关、Redis实现共同关注、 博客推送与分页查询
  • 专业高清录屏软件!Mirillis Action v4.40 解锁版下载,小白看了都会的安装方法
  • 胤娲科技:AI重塑会议——灵动未来,会议新纪元
  • Python画笔案例-080 绘制 颜色亮度测试
  • MATLAB工具库:数据统计分析工具MvCAT、MhAST等
  • 角色动画——RootMotion全解
  • 加密软件的桌面管理系统有什么?
  • 【stm32】寄存器(stm32技术手册下载链接)
  • django的路由分发
  • 《贪吃蛇小游戏 1.0》源码
  • 初入网络学习第一篇
  • (项目管理系列课程)项目规划阶段:项目范围管理-收集需求
  • SQl注入文件上传及sqli-labs第七关less-7
  • 想成为月薪过万的软件测试工程师?快看过来!
  • 找生网站方案———未来之窗行业应用跨平台架构
  • 全网都在找的Python生成器竟然在这里!简单几步,让你的代码更简洁、更高效!