当前位置: 首页 > news >正文

plt常用函数介绍一

目录

  • 前言
  • plt.figure()
  • plt.subplot()
  • plt.subplots()
  • plt.xticks()
  • plt.xlim()

前言

Matplotlib是Python中的一个库,它是数字的-NumPy库的数学扩展。 Pyplot是Matplotlib模块的基于状态的接口。在Pyplot中可以使用各种图,例如线图,轮廓图,直方图,散点图,3D图等。

plt.figure()

plt.figure() 是 Matplotlib 库中的一个函数,用于创建一个新的图形窗口或图形对象。在使用 Matplotlib 进行数据可视化时,我们通常会使用 plt.figure() 来创建一个新的图形对象,然后在这个图形对象上绘制图表、图像或子图等内容。

该函数的语法为:

plt.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=<class 'matplotlib.figure.Figure'>, clear=False, **kwargs)

参数说明:

  1. num: 图形的编号,如果为None,则创建一个新的图形窗口,如果指定了编号,则可以通过 plt.figure(num) 调用该图形窗口。
  2. figsize: 指定图形的尺寸,以元组 (width, height) 的形式指定,单位为英寸。
  3. dpi:每英寸点数,用于指定图形的分辨率。
  4. facecolor: 图形的背景色。
  5. edgecolor: 图形的边框颜色。
  6. frameon:是否显示边框。
  7. FigureClass: 用于指定图形对象的类。
  8. clear: 是否清除图形对象。

示例:

import matplotlib.pyplot as plt# 创建一个新的图形对象
plt.figure(figsize=(8, 6), dpi=80)# 绘制图表、图像等内容
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])# 显示图形
plt.show()

在这里插入图片描述

plt.subplot()

plt.subplot() 是 Matplotlib 库中的一个函数,用于在一个图形窗口中创建一个或多个子图。在使用 Matplotlib 进行数据可视化时,我们通常会使用 plt.subplot() 来创建一个子图,并在这个子图上绘制具体的图表、图像等内容。

该函数的语法为:

plt.subplot(nrows, ncols, index, **kwargs)

参数说明:

  1. nrows: 子图网格的行数。
  2. ncols: 子图网格的列数。
  3. index: 子图的索引,从左上角开始,从左到右,从上到下依次递增。

subplot可以将figure划分为n个子图,但每条subplot命令只会创建一个子图 ,如果要绘制多个子图,可以考虑使用for 循环。

示例:

import matplotlib.pyplot as plt# plt.figure(figsize = (10,6))# 创建一个 2x2 的子图网格,并选择第一个子图进行绘制
plt.subplot(2, 2, 1)
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])# 选择第二个子图进行绘制
plt.subplot(2, 2, 2)
plt.bar(['A', 'B', 'C', 'D'], [10, 20, 15, 30])# 选择第三个子图进行绘制
plt.subplot(2, 2, 3)
plt.scatter([1, 2, 3, 4], [1, 4, 9, 16])# 选择第四个子图进行绘制
plt.subplot(2, 2, 4)
plt.pie([30, 20, 25, 25], labels=['A', 'B', 'C', 'D'])# 显示图形
plt.show()

在这里插入图片描述

plt.subplots()

plt.subplots() 是 Matplotlib 库中的一个函数,用于创建一个新的图形窗口并返回一个包含所有子图的 Figure 对象和 Axes 对象数组。在使用 Matplotlib 进行数据可视化时,我们通常会使用 plt.subplots() 来创建一个包含多个子图的图形窗口。

该函数的语法为:

fig, ax = plt.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)

参数说明:

  1. nrows: 子图网格的行数。
  2. ncols: 子图网格的列数。
  3. sharex: 是否共享x轴刻度。
  4. sharey: 是否共享y轴刻度。
  5. squeeze: 是否压缩返回的 Axes 数组。
  6. subplot_kw: 用于创建每个子图的关键字参数。
  7. gridspec_kw:用于创建子图网格的关键字参数。
  8. fig_kw: 用于创建图形窗口的关键字参数。

示例:

import matplotlib.pyplot as plt# 创建一个包含2x2子图的图形窗口
fig, ax = plt.subplots(nrows=2, ncols=2)# 在第一个子图中绘制折线图
ax[0, 0].plot([1, 2, 3, 4], [1, 4, 9, 16])# 在第二个子图中绘制散点图
ax[0, 1].scatter([1, 2, 3, 4], [1, 4, 9, 16])# 在第三个子图中绘制柱状图
ax[1, 0].bar(['A', 'B', 'C', 'D'], [10, 20, 15, 30])# 在第四个子图中绘制饼图
ax[1, 1].pie([30, 20, 25, 25], labels=['A', 'B', 'C', 'D'])# 显示图形
plt.show()

在这里插入图片描述

plt.xticks()

plt.xticks() 是 Matplotlib 库中用于设置 x 轴刻度的函数。它允许我们自定义 x 轴上的刻度位置和标签。

该函数的语法为:

plt.xticks(ticks=None, labels=None, **kwargs)

参数说明:

  1. ticks:要设置的刻度位置的列表或数组。
  2. labels:与刻度位置对应的标签列表或数组。
  3. **kwargs:其他关键字参数,用于控制刻度的外观样式,例如颜色、字体大小等。

在 Matplotlib 中 plt.ticks() 函数 表示的是刻度, plt.xticks() 就表示x 轴刻度,plt.yticks() 就表示y 轴刻度。plt.xticks([]) # 不显示x 轴刻度
plt.yticks([]) # 不显示y 轴刻度。

示例:

import matplotlib.pyplot as plt# 创建一个简单的折线图
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
plt.plot(x, y)# 设置 x 轴刻度的位置和标签
plt.xticks([1, 2, 3, 4, 5], ['A', 'B', 'C', 'D', 'E'])# 显示图形
plt.show()

在这里插入图片描述

plt.xlim()

plt.xlim() 是 Matplotlib 库中用于设置 x 轴显示范围的函数。它允许我们指定 x 轴的数据范围,即设置 x 轴的最小值和最大值。

该函数的语法为:

plt.xlim(left, right)

参数说明:

  1. left:x 轴的最小值。
  2. right:x 轴的最大值。

在 Matplotlib中的 plt.xlim() 函数用来显示x轴的作图范围,plt.ylim() 用来显示y轴的作图范围。

示例:

import matplotlib.pyplot as plt# 创建一个简单的折线图
x = [1, 2, 3, 4, 5,7]
y = [2, 3, 5, 7, 11,16]
plt.plot(x, y)# 设置 x 轴的显示范围
plt.xlim(1, 5)# 显示图形
plt.show()

在这里插入图片描述

http://www.lryc.cn/news/446230.html

相关文章:

  • 基于ExtendSim的 电子制造 仿真模型
  • BGP 路由反射器
  • CSRF高级防御绕过
  • MySQL安装文档-Windows
  • html TAB、table生成
  • 2024!再见前端!
  • 【源码+文档+调试讲解】人事管理系统设计与实现Python
  • 基于注意力机制的图表示学习:GRAPH-BERT模型
  • linux服务器安装原生的php环境
  • 数电学习基础(逻辑门电路+)
  • 【艾思科蓝】Spring Boot实战:零基础打造你的Web应用新纪元
  • C++ 二叉树
  • 初探IT世界:从基础到未来
  • 一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
  • 机器翻译之Bahdanau注意力机制在Seq2Seq中的应用
  • MyBatis 入门教程-搭建入门工程
  • CVE-2024-2389 未经身份验证的命令注入
  • C++初阶-list用法总结
  • 【智能大数据分析 | 实验一】MapReduce实验:单词计数
  • Git 版本控制--git restore和git reset
  • DBAPI如何实现插入数据前先判断数据是否存在,存在就更新,不存在就插入
  • 【渗透测试】-灵当CRM系统-sql注入漏洞复现
  • c语言练习题1(数组和循环)
  • 实验3 Hadoop集群运行环境搭建和使用
  • 前端文件上传全过程
  • MySQL中的函数简单总结,以及TCL语句的简单讲解
  • GPS在Linux下的使用(war driving的前置学习)
  • 开发经验总结: 读写分离简单实现
  • MySQL(面试题 - 同类型归纳面试题)
  • 【C++ Primer Plus习题】17.7