当前位置: 首页 > news >正文

一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • 一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;

2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;

3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

5.适用对象:大学生课程设计、期末大作业和毕业设计。
在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测Matlab)。

%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%%  参数设置
fun = @getObjValue;    % 目标函数
dim = 2;               % 优化参数个数
lb  = [0.1, 0.1];      % 优化参数目标下限
ub  = [ 800,  800];    % 优化参数目标上限
pop = 20;              % 种群数量
Max_iteration = 30;    % 最大迭代次数   %%  优化算法
[Best_score,Best_pos, curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); %%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

http://www.lryc.cn/news/446216.html

相关文章:

  • 机器翻译之Bahdanau注意力机制在Seq2Seq中的应用
  • MyBatis 入门教程-搭建入门工程
  • CVE-2024-2389 未经身份验证的命令注入
  • C++初阶-list用法总结
  • 【智能大数据分析 | 实验一】MapReduce实验:单词计数
  • Git 版本控制--git restore和git reset
  • DBAPI如何实现插入数据前先判断数据是否存在,存在就更新,不存在就插入
  • 【渗透测试】-灵当CRM系统-sql注入漏洞复现
  • c语言练习题1(数组和循环)
  • 实验3 Hadoop集群运行环境搭建和使用
  • 前端文件上传全过程
  • MySQL中的函数简单总结,以及TCL语句的简单讲解
  • GPS在Linux下的使用(war driving的前置学习)
  • 开发经验总结: 读写分离简单实现
  • MySQL(面试题 - 同类型归纳面试题)
  • 【C++ Primer Plus习题】17.7
  • vue3(整合版)
  • 复制他人 CSDN 文章到自己的博客
  • 【算法——二分查找】
  • Cisco Packet Tracer的安装加汉化
  • MMain函数定义为WinMain函数看port1632.h和pwin32.h文件
  • 单词搜索问题(涉及递归等)
  • Redis的一些通用指令
  • C++中vector类的使用
  • cmaklist流程控制——调试及发布
  • 制作一个能对话能跳舞的otto机器人
  • git配置SSH
  • mozilla/pdf.js view.html加载指定页码
  • Qt之QFuture理解
  • 求二叉树的高度(递归和非递归)