当前位置: 首页 > news >正文

C++ 二叉树

1. 二叉搜索树

1.1 二叉搜索树概念

二叉搜索树又称二叉排序树,他或者是一棵空树,或者是具有以下性质的二叉树:

①若它的左子树不为空,则左子树上所有节点的值都小于根节点的值

②若它的右子树不为空,则右子树上所有节点的值都大于根节点的值

③它的左右子树也分别为二叉搜索树

1.2 二叉搜索树操作

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

1.二叉搜索树的查找

a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。

b、最多查找高度次,走到空,还没找到,这个值不存在。

2.二叉搜索树的插入

插入的具体过程如下:

a、树为空,则直接新增节点,赋值给root指针

b、树不为空,按二叉搜索树性质查找插入位置,插入新节点。

3.二叉搜索树的删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回,否则要删除的节点可能分下面四种情况:

a、要删除的节点无孩子节点

b、要删除的节点只有左孩子节点

c、要删除的节点只有右孩子节点

d、要删除的节点有左、右孩子节点

看起来有待删除节点有四种情况,实际情况a可以与b、c结合起来,因此真正的删除过程如下:

*有一个孩子或者无孩子的节点被删除,则让被删除节点的双亲指向被删除节点的孩子或者空——直接删除

*有两个孩子的节点被删除,则在它的右子树中寻找最小的节点,用它的值填补到删除节点中,再来处理该节点的删除问题(符合二叉搜索树,左节点<根<右节点)——替换法删除

1.3 二叉搜索树的实现

树的节点

完整代码:

template <class T>
struct BSTNode
{T _key;BSTNode<T>* _left;BSTNode<T>* _right;BSTNode(const T& key):_left(nullptr), _right(nullptr), _key(key){}
};template <class T>
class BSTree
{typedef BSTNode<T> Node;public:BSTree() = default;BSTree(const BSTree<T>& t){_root = Copy(t._root);}~BSTree(){Destory(_root);_root = nullptr;}bool insert(const T& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}Node* Find(const T& key){Node* cur = _root;while (cur){if (cur->_key < key)cur = cur->_right;else if (cur->_key > key)cur = cur->_left;elsereturn cur;}return nullptr;}void InOrder(){_InOrder(_root);cout << endl;}bool Erase(const T& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{// 删除// 0-1个孩子的情况if (cur->_left == nullptr){if (parent == nullptr){_root = cur->_right;}else{if (parent->_left == cur)parent->_left = cur->_right;elseparent->_right = cur->_right;}delete cur;return true;}else if (cur->_right == nullptr){if (parent == nullptr){_root = cur->_left;}else{if (parent->_left == cur)parent->_left = cur->_left;elseparent->_right = cur->_left;}delete cur;return true;}else{// 2个孩子的情况// 右子树的最小节点作为替代节点Node* rightMinP = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinP = rightMin;rightMin = rightMin->_left;}cur->_key = rightMin->_key;if (rightMinP->_left == rightMin)rightMinP->_left = rightMin->_right;elserightMinP->_right = rightMin->_right;delete rightMin;return true;}}}return false;}private:void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << " " << endl;_InOrder(root->_right);}Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newroot = new Node(root->_key);newroot->_left = Copy(root->_left);newroot->_right = Copy(root->_right);return newroot;}void Destory(Node* root){if (root == nullptr){return;}Destory(root->_left);Destory(root->_right);delete root;}Node* _root = nullptr;
};

 1.4 二叉搜索树的应用

1.K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。

比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:

*以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树

*在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

2. KV模型:每一个关键码key,都有与之对应的值Value,即的键值对。该种方式在现实生活中非常常见:

*比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文就构成一种键值对;

*再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是就构成一种键值对。

改造成kv结构的二叉搜索树的代码(与前面的逻辑基本上是一样的,无非就是多了一个值value)

完整代码:

using namespace std;template <class T,class V>
struct BSTNode
{T _key;V _value;BSTNode<T,V>* _left;BSTNode<T,V>* _right;BSTNode(const T& key,const V& value):_left(nullptr),_right(nullptr),_key(key),_value(value){}
};template <class T,class V>
class BSTree
{typedef BSTNode<T,V> Node;public:BSTree() = default;BSTree(const BSTree<T, V>& t){_root = Copy(t._root);}~BSTree(){Destory(_root);_root = nullptr;}bool insert(const T& key,const V& value){if (_root == nullptr){_root = new Node(key,value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key,value);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}Node* Find(const T& key){Node* cur = _root;while (cur){if (cur->_key < key)cur = cur->_right;else if (cur->_key > key)cur = cur->_left;elsereturn cur;}return nullptr;}void InOrder(){_InOrder(_root);cout << endl;}bool Erase(const T& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{// 删除// 0-1个孩子的情况if (cur->_left == nullptr){if (parent == nullptr){_root = cur->_right;}else{if (parent->_left == cur)parent->_left = cur->_right;elseparent->_right = cur->_right;}delete cur;return true;}else if (cur->_right == nullptr){if (parent == nullptr){_root = cur->_left;}else{if (parent->_left == cur)parent->_left = cur->_left;elseparent->_right = cur->_left;}delete cur;return true;}else{// 2个孩子的情况// 右子树的最小节点作为替代节点Node* rightMinP = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinP = rightMin;rightMin = rightMin->_left;}cur->_key = rightMin->_key;if (rightMinP->_left == rightMin)rightMinP->_left = rightMin->_right;elserightMinP->_right = rightMin->_right;delete rightMin;return true;}}}return false;}private:void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << " " << root->_value << endl;_InOrder(root->_right);}Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newroot = new Node(root->_key, root->_value);newroot->_left = Copy(root->_left);newroot->_right = Copy(root->_right);return newroot;}void Destory(Node* root){if (root == nullptr){return;}Destory(root->_left);Destory(root->_right);delete root;}Node* _root=nullptr;
};

1.5 二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。

但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

 

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:$log_2 N$

最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:$\frac{N}{2}$

问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插入关键码,二叉搜索树的性能都能达到最优?那么AVL树和红黑树就可以上场了,但是这边就不继续讲述AVL和红黑树了。

好了,今天就到这了,我们下次见~

有问题欢迎指正批评!!!

http://www.lryc.cn/news/446218.html

相关文章:

  • 初探IT世界:从基础到未来
  • 一区黏菌算法+双向深度学习+注意力机制!SMA-BiTCN-BiGRU-Attention黏菌算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
  • 机器翻译之Bahdanau注意力机制在Seq2Seq中的应用
  • MyBatis 入门教程-搭建入门工程
  • CVE-2024-2389 未经身份验证的命令注入
  • C++初阶-list用法总结
  • 【智能大数据分析 | 实验一】MapReduce实验:单词计数
  • Git 版本控制--git restore和git reset
  • DBAPI如何实现插入数据前先判断数据是否存在,存在就更新,不存在就插入
  • 【渗透测试】-灵当CRM系统-sql注入漏洞复现
  • c语言练习题1(数组和循环)
  • 实验3 Hadoop集群运行环境搭建和使用
  • 前端文件上传全过程
  • MySQL中的函数简单总结,以及TCL语句的简单讲解
  • GPS在Linux下的使用(war driving的前置学习)
  • 开发经验总结: 读写分离简单实现
  • MySQL(面试题 - 同类型归纳面试题)
  • 【C++ Primer Plus习题】17.7
  • vue3(整合版)
  • 复制他人 CSDN 文章到自己的博客
  • 【算法——二分查找】
  • Cisco Packet Tracer的安装加汉化
  • MMain函数定义为WinMain函数看port1632.h和pwin32.h文件
  • 单词搜索问题(涉及递归等)
  • Redis的一些通用指令
  • C++中vector类的使用
  • cmaklist流程控制——调试及发布
  • 制作一个能对话能跳舞的otto机器人
  • git配置SSH
  • mozilla/pdf.js view.html加载指定页码