当前位置: 首页 > news >正文

Python的图像算术与逻辑运算详解

一.图像加法运算

图像加法运算主要有两种方法。第一种是调用Numpy库实现,目标图像像素为两张图像的像素之和;第二种是通过OpenCV调用add()函数实现。第二种方法的函数原型如下:

  • dst = add(src1, src2[, dst[, mask[, dtype]]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。
    – dtype表示输出数组的可选深度

注意,当两幅图像的像素值相加结果小于等于255时,则输出图像直接赋值该结果,如120+48赋值为168;如果相加值大于255,则输出图像的像素结果设置为255,如(255+64) 赋值为255。下面的代码实现了图像加法运算。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片
img = cv2.imread("luo.png")#图像各像素加100
m = np.ones(img.shape, dtype="uint8")*100#OpenCV加法运算
result = cv2.add(img, m)#显示图像
cv2.imshow("original", img)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-1所示,左边为“小珞珞”的原始图像,右边为像素值增加100像素后的图像,输出图像显示更偏白。

在这里插入图片描述


二.图像减法运算

图像减法运算主要调用subtract()函数实现,其原型如下所示:

  • dst = subtract(src1, src2[, dst[, mask[, dtype]]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。
    – dtype表示输出数组的可选深度

具体实现代码如下所示:

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png")#图像各像素减50
m = np.ones(img.shape, dtype="uint8")*50#OpenCV减法运算
result = cv2.subtract(img, m)#显示图像
cv2.imshow("original", img)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-2所示,左边为原始图像,右边为像素值减少50像素后的图像,输出图像显示更偏暗。

在这里插入图片描述


三.图像与运算

与运算是计算机中一种基本的逻辑运算方式,符号表示为“&”,其运算规则为:

  • 0&0=0
  • 0&1=0
  • 1&0=0
  • 1&1=1

图像的与运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“与”操作,实现图像裁剪。

  • dst = bitwise_and(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

下面代码是通过图像与运算实现图像剪裁的功能。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png", cv2.IMREAD_GRAYSCALE)#获取图像宽和高
rows, cols = img.shape[:2]
print(rows, cols)#画圆形
circle = np.zeros((rows, cols), dtype="uint8")
cv2.circle(circle, (int(rows/2),int(cols/2)), 100, 255, -1)
print(circle.shape)
print(img.size, circle.size)#OpenCV图像与运算
result = cv2.bitwise_and(img, circle)#显示图像
cv2.imshow("original", img)
cv2.imshow("circle", circle)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-3所示,原始图像与圆形进行与运算之后,提取了其中心轮廓。同时输出图像的形状为377×326。注意,两张图像的大小和类型必须一致。

在这里插入图片描述


四.图像或运算

逻辑或运算是指如果一个操作数或多个操作数为 true,则逻辑或运算符返回布尔值 true;只有全部操作数为false,结果才是 false。图像的或运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“或”操作,实现图像裁剪。其函数原型如下所示:

  • dst = bitwise_or(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

下面代码是通过图像或运算实现图像剪裁的功能。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png", cv2.IMREAD_GRAYSCALE)#获取图像宽和高
rows, cols = img.shape[:2]#画圆形
circle = np.zeros((rows, cols), dtype="uint8")
cv2.circle(circle, (int(rows/2),int(cols/2)), 100, 255, -1)#OpenCV图像或运算
result = cv2.bitwise_or(img, circle)#显示图像
cv2.imshow("original", img)
cv2.imshow("circle", circle)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-4所示,原始图像与圆形进行或运算之后,提取了图像除中心原形之外的像素值。

在这里插入图片描述


五.图像非运算

图像非运算就是图像的像素反色处理,它将原始图像的黑色像素点转换为白色像素点,白色像素点则转换为黑色像素点,其函数原型如下:

  • dst = bitwise_not(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

图像非运算的实现代码如下所示。

#coding:utf-8
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("Lena.png", cv2.IMREAD_GRAYSCALE)#OpenCV图像非运算
result = cv2.bitwise_not(img)#显示图像
cv2.imshow("original", img)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

原始图像非运算之后输出如图4-5所示。

在这里插入图片描述


六.图像异或运算

逻辑异或运算(xor)是一个数学运算符,数学符号为“⊕”,计算机符号为“xor”,其运算法则为:如果a、b两个值不相同,则异或结果为1;如果a、b两个值相同,异或结果为0。

图像的异或运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“异或”操作,实现图像裁剪。其函数原型如下所示:

  • dst = bitwise_xor(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

图像异或运算的实现代码如下所示。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png", cv2.IMREAD_GRAYSCALE)#获取图像宽和高
rows, cols = img.shape[:2]#画圆形
circle = np.zeros((rows, cols), dtype="uint8")
cv2.circle(circle, (int(rows/2),int(cols/2)), 100, 255, -1)#OpenCV图像异或运算
result = cv2.bitwise_xor(img, circle)#显示图像
cv2.imshow("original", img)
cv2.imshow("circle", circle)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

原始图像与圆形进行异或运算之后输出如图4-6所示。

在这里插入图片描述


http://www.lryc.cn/news/432890.html

相关文章:

  • WSL 下的 CentOS 装 Docker
  • v0.dev快速开发
  • python之字符串
  • 算法打卡 Day28(回溯算法)-组合总数 + 组合总数 Ⅱ+ 电话号码的字母组合
  • 【Hadoop|MapReduce篇】MapReduce概述
  • 设置Virtualbox虚拟机共享文件夹
  • 从零开始的机器学习之旅
  • 开源还是封闭?人工智能的两难选择
  • Prometheus 服务监控
  • 建模杂谈系列252 规则的串行改并行
  • 0.ffmpeg面向对象oopc
  • KDD2024参会笔记-Day1
  • Java操作Elasticsearch的实用指南
  • 数据库系统 第42节 数据库索引简介
  • C++11 --- 智能指针
  • C#顺序万年历自写的求余函数与周位移算法
  • 【Java并发编程一】八千字详解多线程
  • CentOS 8FTP服务器
  • C++ | Leetcode C++题解之第385题迷你语法分析器
  • 【软件设计师真题】第一大题---数据流图设计
  • 系统架构的发展历程之模块化与组件化
  • 基因组学中的深度学习
  • 解决老师询问最高分数问题的编程方案
  • com.baomidou.mybatisplus.annotation.DbType 无法引入
  • 从零开始学习JVM(七)- StringTable字符串常量池
  • 数据库课程设计mysql
  • AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理
  • 点餐小程序实战教程03创建应用
  • 鸿蒙自动化发布测试版本app
  • 力扣9.7