当前位置: 首页 > news >正文

C++11 --- 智能指针

序言

 在使用 C / C++ 进行编程时,许多场景都需要我们在堆上申请空间,堆内存的申请和释放都需要我们自己进行手动管理。这就存在容易造成堆内存泄露(忘记释放),二次释放,程序发生异常时内存泄露等问题,这对长期运行的程序来说是致命的!
 但在 C++11 中引入了智能指针,使我们将内存的管理交给智能指针。


1. 什么是智能指针

1.1 概念

 该指针旨在自动管理动态分配的内存,减少内存泄漏和野指针的问题。智能指针是模板类,它们的行为类似于指针,但提供了自动的内存管理功能

1.2 RAII 思想

 智能指针在 C++ 中主要使用了 资源获取即初始化(Resource Acquisition Is Initialization, RAII) 的思想,以及所有权管理的概念。RAII 的核心思想是,资源的分配(获取)和初始化发生在对象的构造期间,而 资源的释放(清理)则发生在对象的析构期间。这种方式通过对象的生命周期来自动管理资源,避免了忘记释放资源(如内存泄漏)的问题。

1.3 体现 RAII 思想

 在这里为大家举一个简单的例子来体现 RAII 思想

这是我们现在的内存管理,我们需要手动释放申请的资源:

int main()
{int* Ptr = new int[5];// Do Otherthing......delete[] Ptr;return 0;
}

现在实现一个简单的智能指针:

template <class T>
class SmartPtr
{
public:SmartPtr(T* Ptr):_Ptr(Ptr){}// Ohther Functions... ~SmartPtr(){std::cout << "Delete Ptr" << std::endl;delete _Ptr;}private:T* _Ptr;
};int main()
{SmartPtr<int> sp(new int(1));return 0;
}

我们将申请的资源交给智能指针为我们管理,当程序结束时,将自动执行析构函数释放资源:
在这里插入图片描述


2. 三种主要的智能指针

2.1 unique_ptr

unique_ptr 是一种 独占所有权 的智能指针,意味着 同一时间内只能有一个 unique_ptr 指向给定的对象,他直接删除了他的拷贝构造和赋值运算符重载:
在这里插入图片描述在这里插入图片描述
注意:保留了对将亡值的赋值运算符重载,因为就修改操作后将亡值就释放了,依旧满足独占所有权的特性!

简单使用一下该指针:

void Ptr_1()
{std::unique_ptr<MyClass> up1(new MyClass); up1->DoSomething();std::unique_ptr<MyClass> up2(move(up1)); // 移动构造std::cout << up1 << std::endl; // up1 这时已被悬空
}

程序输出结果:

I am working!
0000000000000000
~MyClass()

 该智能指针还是比较简单的,但是一定要注意指针被悬空后的情况!

2.2 shared_ptr

shared_ptr 是一种 共享所有权 的智能指针,允许多个 shared_ptr 实例指向同一个对象。每个 shared_ptr 都有一个与之关联的计数器,称为控制块,用于跟踪有多少个 shared_ptr 实例指向该对象。当最后一个指向对象的 shared_ptr 被销毁或重置时,对象才会被删除。

简单使用一下该指针:

void Ptr_2()
{std::shared_ptr<MyClass> sp1(new MyClass); // 构造 std::shared_ptr<MyClass> sp2(sp1); // 拷贝构造sp2->DoSomething();std::cout << "The use counts = " << sp1.use_count() << std::endl; // 查看计数器
}

程序输出结果:

I am working!
The use counts = 2
~MyClass()


循环引用问题

 使用该指针需要注意一个非常特殊的情况,一不小心掉入坑中!这种情况就是循环引用:

struct Node
{Node(int val):_val(val),_next(nullptr),_prev(nullptr){}~Node(){std::cout << "~Node()" << std::endl;} int _val;std::shared_ptr<Node> _prev;std::shared_ptr<Node> _next;
};void Ptr_3()
{std::shared_ptr<Node> sp1(new Node(1));std::shared_ptr<Node> sp2(new Node(2));// 相互指向sp1->_next = sp2;sp1->_prev = sp1;
}

运行程序,我们会发现并没有正常的未释放资源!出现问题的原因,用图来表示:
在这里插入图片描述
当我们函数结束时,函数栈帧销毁,这时两个指针对象调用析构函数来释放资源:
在这里插入图片描述
这里的析构函数并不会真正意义上调用 delete ,而是减少引用!直到引用计数为 0 才会调用 delete,所以,这里的资源并没有真正的被释放,因为 next,prev 指针的存在,所以资源并不会被释放!

2.3 weak_ptr

weak_ptr 是一种 不拥有其所指向对象的智能指针,它主要 用于解决 shared_ptr 之间的循环引用问题weak_ptr 必须与 shared_ptr 一起使用,因为它不拥有对象,所以不会增加对象的共享计数。
 简单使用一下该指针:

void Ptr_4()
{// std::weak_ptr<int> wp(new int(1)); // 错误的使用方法 weak_ptr 不能直接管理对象的生命周期std::shared_ptr<int> sp(new int(1));std::weak_ptr<int> wp(sp);std::cout << wp.use_count() << std::endl; 
}

现在我们使用 weak_ptr 来解决循环引用的问题:

struct Node
{Node(int val):_val(val){}~Node(){std::cout << "~Node()" << std::endl;} int _val;std::weak_ptr<Node> _prev;std::weak_ptr<Node> _next;
};void Ptr_3()
{std::shared_ptr<Node> sp1(new Node(1));std::shared_ptr<Node> sp2(new Node(2));// 相互指向sp1->_next = sp2;sp2->_prev = sp1;
}

_prev, _next 修改为 weak_ptr 来代表不进行引用计数的增加,只是简单的指向,资源现在被正常的释放!

2.4 自定义删除器

 在智能指针的底层,对于资源的释放,单个就使用 delete,数组就是使用 delete[] ,大绝大多数场景下都是没问题的。但是,总是有特殊情况:

void Ptr_5()
{std::shared_ptr<FILE> sp(fopen("test.txt", "w"));
}

请问,这个使用 delete 可以删除吗?当然是不可以,有人会觉得,这不是在鸡蛋里挑骨头吗?其实,我们很多时候就是更应该想到极端情况,Bug 不能被消除,但可以被极力避免!我们程序的健壮性,肯定决定了我们运行的稳定性!

 这时,我们就可以使用自定义删除器:
在这里插入图片描述
我们需要传递一个可调用对象告诉他,该怎么删除。选择很多,包括函数指针,仿函数… 在这里我们选择 lambda ,这就非常的方便!

std::shared_ptr<FILE> sp(fopen("test.txt", "w"), [](FILE* file) {fclose(file); });

3. 简单实现

 在这里我们简单实现一个 shared_ptr

3.1 构造函数

 首先,先介绍三个成员变量:

T* _Ptr;
std::atomic<int>* _RefCounts; // 引用计数(保证原子性)
std::function<void(T*)> _Del; // 自定义删除器
  • _Ptr:是我们需要管理的资源
  • _RefCounts:计数器,记录多少指针指向该资源(本质就是 int,但是支持原子性操作)
  • _Del:删除器,保证资源正常的释放,有特殊删除需求可传入

一共实现了简单的三个构造函数:

// 构造函数(默认删除器)
SharedPtr(T* Ptr): _Ptr(Ptr), _RefCounts(new std::atomic<int>(1)), _Del([](T* val) { delete val; })
{}// 构造函数(自定义删除器)
template<class D>
SharedPtr(T* Ptr, D Del): _Ptr(Ptr), _RefCounts(new std::atomic<int>(1)), _Del(Del)
{}// 拷贝构造
SharedPtr(const SharedPtr<T>& sp): _Ptr(sp._Ptr), _RefCounts(sp._RefCounts), _Del(sp._Del)
{++(*_RefCounts);
}

3.2 析构函数

 该函数在释放资源前需要判断,当引用计数为 0 时才可释放资源,避免正在使用的指针被悬空:

// 当计数置 0 时调用
void destructor()
{_Del(_Ptr);_Ptr = nullptr;delete _RefCounts;_RefCounts = nullptr;
}// 析构函数
~SharedPtr()
{// 引用减少--(*_RefCounts);if (*_RefCounts == 0){destructor();}
}

3.3 赋值运算符重载

 赋值运算符重载需要极其注意,在指向其他资源前需要对当前资源释放(引用计数减一,若为 0,才真正释放资源):

void clear()
{// 引用减少--(*_RefCounts);if (*_RefCounts == 0){destructor();}
}SharedPtr<T>& operator=(const SharedPtr<T>& sp)
{if (this != &sp) // 防止自我赋值{clear(); // 释放当前资源_Ptr = sp._Ptr;_RefCounts = sp._RefCounts;_Del = sp._Del; // 复制删除器++(*_RefCounts);}return *this;
}

3.4 其余的运算符重载

 此部分为常用的运算符重载:

T& operator* ()
{return *_Ptr;
}T* operator->()
{return _Ptr;
}

4. 总结

 在这篇文章中我们首先介绍了智能指针的思想,之后分别介绍了常用的三种智能指针(unique_ptr, shared_ptr, weak_ptr),最后我们简单的实现了第二个指针,希望大家有所收获!

http://www.lryc.cn/news/432875.html

相关文章:

  • C#顺序万年历自写的求余函数与周位移算法
  • 【Java并发编程一】八千字详解多线程
  • CentOS 8FTP服务器
  • C++ | Leetcode C++题解之第385题迷你语法分析器
  • 【软件设计师真题】第一大题---数据流图设计
  • 系统架构的发展历程之模块化与组件化
  • 基因组学中的深度学习
  • 解决老师询问最高分数问题的编程方案
  • com.baomidou.mybatisplus.annotation.DbType 无法引入
  • 从零开始学习JVM(七)- StringTable字符串常量池
  • 数据库课程设计mysql
  • AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理
  • 点餐小程序实战教程03创建应用
  • 鸿蒙自动化发布测试版本app
  • 力扣9.7
  • GPU 带宽功耗优化
  • Linux Centos 7网络配置
  • 第三天旅游线路规划
  • C++第四十七弹---深入理解异常机制:try, catch, throw全面解析
  • go 和 java 技术选型思考
  • 传统CV算法——边缘算子与图像金字塔算法介绍
  • 图像去噪算法性能比较与分析
  • Vision Transformer(ViT)模型原理及PyTorch逐行实现
  • 828华为云征文 | Flexus X实例CPU、内存及磁盘性能实测与分析
  • FreeRTOS学习笔记(六)队列
  • 【Python篇】PyQt5 超详细教程——由入门到精通(中篇一)
  • LinuxQt下的一些坑之一
  • Statement batch
  • PPP 、PPPoE 浅析和配置示例
  • 【Python机器学习】词向量推理——词向量