当前位置: 首页 > news >正文

传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子

图像梯度算子 - Sobel

Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域,这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来实现的,具体来说:

  • ddepth:输出图像的深度,通常设置为cv2.CV_64F来避免负数被截断。
  • dxdy 分别指定了水平和垂直方向的导数阶数,比如 dx=1, dy=0 就是对水平方向求一阶导数,用于检测垂直边缘;而 dx=0, dy=1 对应的是对垂直方向求一阶导数,用于检测水平边缘。
  • ksize 是Sobel算子的大小,它决定了滤波器的大小。ksize越大,滤波器覆盖的像素就越多,边缘检测就越模糊。常见的ksize值有1, 3, 5, 7。特别地,ksize=-1时会应用3x3的Scharr滤波器,它比3x3的Sobel滤波器有更好的结果。

在实践中,Sobel算子通过卷积框架应用于图像,分别计算x和y方向上的梯度,然后根据需要可能会结合这两个方向的梯度来得到边缘的完整表示。

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')

在这里插入图片描述

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

在这里插入图片描述

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')

在这里插入图片描述

灰度化处理
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')

在这里插入图片描述
cv2.convertScaleAbs()函数主要作用是将梯度转换成可视化的形式。在进行Sobel边缘检测后,如果直接输出梯度结果,可能会因为数据类型的问题(比如负值)而不能正确显示。这个函数首先对输入的梯度值进行绝对值处理,然后将数据类型转换为无符号8位整型(uint8),这样就可以正常显示为图像了。这个步骤是图像处理中常用的一种方式,用来将处理后的数据转化为图像处理软件或显示设备可以接受的格式。

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')	

在这里插入图片描述

图像梯度-Scharr算子

在这里插入图片描述

不同算子的差异

分别为sobel 、 Scharr、laplacian

#不同算子的差异
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')

在这里插入图片描述

Canny边缘检测

  1.    使用高斯滤波器,以平滑图像,滤除噪声。
    
  2.    计算图像中每个像素点的梯度强度和方向。
    
  3.    应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
    
  4.    应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
    
  5.    通过抑制孤立的弱边缘最终完成边缘检测。
    

cv2.Canny() 函数实现的是Canny边缘检测算法,这是一种非常流行且有效的图像边缘检测方法。该函数需要两个阈值作为参数,用来控制边缘检测的灵敏度。较低的阈值可以捕获更多的边缘(但可能包括一些噪声),而较高的阈值只捕获最显著的边缘。这个算法的步骤包括使用高斯滤波器去除图像噪声、计算图像的梯度强度和方向、应用非极大值抑制(NMS)来消除边缘响应的假阳性以及应用双阈值检测和边缘连接。最终,它输出一个二值图像,显示了检测到的边缘。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

对车辆采用canny算子
img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

图像金字塔

在这里插入图片描述

高斯金字塔

高斯金字塔主要用于图像的多尺度表示。在计算机视觉和图像处理中,高斯金字塔通过逐步降低图像的分辨率并应用高斯滤波来生成图像的一系列缩小版本。这个过程包括两个基本操作:降采样和平滑。首先,原始图像被高斯滤波器平滑处理,然后每个方向上每隔一个像素进行采样,从而创建出更小尺寸的图像。

高斯金字塔的应用包括但不限于:

  1. 图像压缩:通过降低图像分辨率的方式减少存储空间需求。
  2. 图像融合:在进行图像拼接或HDR图像合成时,金字塔可以帮助在不同尺度上平滑地融合图像。
  3. 物体检测和识别:使用图像金字塔可以在不同的尺度上检测物体,提高检测的精度和鲁棒性。

通过这种方式,高斯金字塔能够在不同的分辨率层次上处理图像,适用于多种不同的图像处理任务。
在这里插入图片描述

img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)

在这里插入图片描述
上采样

up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)

在这里插入图片描述

下采样
down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)

在这里插入图片描述

继续上采样
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)

在这里插入图片描述

原图与经过图像金字塔后处理的图

在这里插入图片描述

拉普拉斯金字塔

在这里插入图片描述

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

在这里插入图片描述

http://www.lryc.cn/news/432854.html

相关文章:

  • 图像去噪算法性能比较与分析
  • Vision Transformer(ViT)模型原理及PyTorch逐行实现
  • 828华为云征文 | Flexus X实例CPU、内存及磁盘性能实测与分析
  • FreeRTOS学习笔记(六)队列
  • 【Python篇】PyQt5 超详细教程——由入门到精通(中篇一)
  • LinuxQt下的一些坑之一
  • Statement batch
  • PPP 、PPPoE 浅析和配置示例
  • 【Python机器学习】词向量推理——词向量
  • Python 语法糖:让编程更简单(续二)
  • 6 - Shell编程之sed与awk编辑器
  • 什么是XML文件,以及如何打开和转换为其他文件格式
  • 海外直播对网速、带宽、安全的要求
  • UWB定位室外基站
  • 高斯平面直角坐标讲解,以及地理坐标转换高斯平面直角坐标
  • C++入门(06)安装QT并快速测试体验一个简单的C++GUI项目
  • 一篇文章告诉你小程序为什么最近这么火?
  • Qt-常用控件(3)-多元素控件、容器类控件和布局管理器
  • 【系统设计】主动查询与主动推送:如何选择合适的数据传输策略
  • mac 安装brew并配置国内源
  • Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测
  • mysql高级sql
  • Linux CentOS 7.9 安装mysql8
  • 替代 Django 默认 User 模型并使用 `django-mysql` 添加数据库备注20240904
  • 三维激光扫描点云配准外业棋盘的布设与棋盘坐标测量
  • 【Python知识宝库】文件操作:读写文件的最佳实践
  • Chapter 13 普通组件的注册使用
  • u盘显示需要格式化才能用预警下的数据拯救恢复指南
  • 还不懂BIO,NIO,AIO吗
  • 物联网——DMA+AD多通道