当前位置: 首页 > news >正文

卡特兰数、斯特林数基础

卡特兰数

从格点(0,0)(0,0)(0,0)走到格点(n,n)(n,n)(n,n),只能向右或向上走,不能穿过对角线,的路径的条数,称为卡特兰数HnH_nHn
在这里插入图片描述
则有H0=1H_0=1H0=1

通项公式:

  1. Hn=(2nn)−(2nn−1)H_n=\begin{pmatrix} 2n\\ n \end{pmatrix}-\begin{pmatrix} 2n\\ n-1 \end{pmatrix}Hn=(2nn)(2nn1)
  2. Hn=(2nn)n+1H_n=\frac {\begin{pmatrix} 2n\\ n \end{pmatrix}}{n+1}Hn=n+1(2nn)
  3. Hn=4n−2n+1Hn−1H_n=\frac{4n-2}{n+1}H_{n-1}Hn=n+14n2Hn1

折线法

证明一下卡特兰数的公式。

先证明公式1:
如果没有限制,那么路径总数是,从2n2n2n步移动之中,选出nnn步向上走,另外nnn步向右走的方案数(2nn)\begin{pmatrix} 2n\\ n \end{pmatrix}(2nn)

如果有限制,我们画出y=x+1y=x+1y=x+1的函数图像,碰到这条线,意味着不合法。
把所有不合法的路径沿着这条图像对折过来,其终点必然是(n−1,n+1)(n-1,n+1)(n1,n+1)
换句话说,所有到达(n−1,n+1)(n-1,n+1)(n1,n+1)的路径,都对应着到达(n,n)(n,n)(n,n)的一条不合法路径。因此答案就是(2nn)−(n+1+n−1n−1)\begin{pmatrix} 2n\\ n \end{pmatrix}-\begin{pmatrix} n+1+n-1\\ n-1 \end{pmatrix}(2nn)(n+1+n1n1)
在这里插入图片描述

QED.

证明一下公式2:
(2nn)−(2nn−1)\begin{pmatrix} 2n\\ n \end{pmatrix}-\begin{pmatrix} 2n\\ n-1 \end{pmatrix}(2nn)(2nn1)
=(2n)!n!n!−(2n)!(n+1)!(n−1)!=\frac{(2n)!}{n!n!}-\frac {(2n)!}{(n+1)!(n-1)!}=n!n!(2n)!(n+1)!(n1)!(2n)!
=(2n)!n!(n−1)!n−(2n)!n!(n−1)!(n+1)=\frac{(2n)!}{n!(n-1)!n}-\frac {(2n)!}{n!(n-1)!(n+1)}=n!(n1)!n(2n)!n!(n1)!(n+1)(2n)!
=(2n)!n!(n−1)!⋅(1n−1n+1)=\frac{(2n)!}{n!(n-1)!}\cdot\left(\frac{1}{n}-\frac 1{n+1}\right)=n!(n1)!(2n)!(n1n+11)
=(2n)!n!(n−1)!n−(2n)!n!(n−1)!(n+1)=\frac{(2n)!}{n!(n-1)!n}-\frac {(2n)!}{n!(n-1)!(n+1)}=n!(n1)!n(2n)!n!(n1)!(n+1)(2n)!
=(2n)!n!(n−1)!⋅(1n−1n+1)=\frac{(2n)!}{n!(n-1)!}\cdot\left(\frac{1}{n}-\frac 1{n+1}\right)=n!(n1)!(2n)!(n1n+11)
=(2n)!n!(n−1)!⋅1n(n+1)=\frac{(2n)!}{n!(n-1)!}\cdot\frac {1}{n(n+1)}=n!(n1)!(2n)!n(n+1)1
=(2n)!n!n!⋅1n+1=\frac{(2n)!}{n!n!}\cdot\frac {1}{n+1}=n!n!(2n)!n+11
=(2nn)⋅1n+1=\begin{pmatrix} 2n\\ n \end{pmatrix}\cdot\frac {1}{n+1}=(2nn)n+11

QED.

证明一下公式3:
留作习题,读者自证不难。

常见情况

特点:一种操作不能超过另一种操作,或操作之间不能有交集。

例如:

  1. 一个由nnn000nnn111组成的长度为2n2n2n的字符串,满足所有前缀中,111的个数不能超过000的个数,这样的子串数量。
  2. 包含nnn组括号的合法表达式的数量。
    (想要括号序列合法,必须保证所有前缀中,左括号的数量大于等于右括号的数量)
  3. 一个栈的进栈序列为1,2,...,n1,2,...,n1,2,...,n,则出栈序列的可能数量。
    (必须保证出栈数量小于等于进栈数量)
  4. 在圆上选择2n2n2n个点,连接起来形成nnn条不相交的弦的方案数。
    (把nnn条不相交的弦映射为括号序列,把弦的左端映射为左括号,右端映射为右括号)
  5. 通过连接顶点将n+2n+2n+2条边的正多边形分为nnn个三角形的方案数(三角剖分)。
    (想要保证分为nnn个三角形,必须保证连接的线不相交)
  6. nnn个节点可以构造多少颗不同的二叉树?
    考虑对n+2n+2n+2条边的多边形三角剖分,把剖分得出的三角形抽象为一个节点,对它相邻的三角形连边,最后得出必定是一颗二叉树。
  7. 一段连乘积有多少种运算次序?
    (相当于给连乘积加括号)

公式法

事实上有:
Hn=∑i=0n−1HiHn−i−1H_n=\overset{n-1}{\underset{i=0}\sum}H_iH_{n-i-1}Hn=i=0n1HiHni1

可以从两个方面来证明一下:

  • 出栈序列
    考虑iii是最后一个出栈的数,则[1,i−1][1,i-1][1,i1]iii进栈之前就出栈了,情况数有Hi−1H_{i-1}Hi1种,而iii后面的n−in-ini个数,则必然在iii出栈前就出栈了,情况数有Hn−iH_{n-i}Hni种,枚举这个iii,得到
    Hn=∑i=1nHi−1Hn−i=∑i=0n−1HiHn−i−1H_n=\overset{n}{\underset{i=1}\sum}H_{i-1}H_{n-i}=\overset{n-1}{\underset{i=0}\sum}H_iH_{n-i-1}Hn=i=1nHi1Hni=i=0n1HiHni1
  • 格点计数
    我们知道,在格点卡特兰数的要求中,路径不能越过对角线。我们可知,在走到终点之前的一步,一定是向上走的:

    红色表示最后一步。

显然,碰到对角线之后,一定是向右走的,我们枚举对角线上的一个点,使得走完向右走的那一步之后,不能越过新的对角线,统计的路径条数:
在这里插入图片描述
绿色,枚举的位置。
红色,最后一步。
蓝色,新的对角线。

此时我们发现,从底下走到绿色圆圈,不能越过对角线。与从绿色箭头走到红色圆圈,不能越过蓝线,是两个更小的卡特兰数问题,因此可以用乘法原理计数。

我们注意到,我们枚举的一种新的情况,在我们枚举的更旧的情况中都属于不合法情况,不会被重复统计。

QED.

用公式同样可以解释各种卡特兰数的情况。

  1. 一个由nnn000nnn111组成的长度为2n2n2n的字符串,满足所有前缀中,111的个数不能超过000的个数,这样的子串数量。
    注意到最后一个字符一定是111,枚举一个位置的000,使得这个000与末尾的那个111匹配,转化为格点计数的情况。
  2. 包含nnn组括号的合法表达式的数量。
    同理。
  3. 一个栈的进栈序列为1,2,...,n1,2,...,n1,2,...,n,则出栈序列的可能数量。
    同理。
  4. 在圆上选择2n2n2n个点,连接起来形成nnn条不相交的弦的方案数。
    同理,枚举一个点与最后那个点(任意指定一个固定的点为最后的点)连接成弦。
  5. 通过连接顶点将n+2n+2n+2条边的正多边形分为nnn个三角形的方案数(三角剖分)。
    同理4。
  6. nnn个节点可以构造多少颗不同的二叉树?
    枚举根节点有iii个左子树,则就会有n−i−1n-i-1ni1个右子树,显然。

斯特林数

第一类斯特林数

定义[nm]\begin{bmatrix}n\\ m\end{bmatrix}[nm]表示nnn元集合划分为mmm个非空环排列的方案数,即无符号第一类斯特林数,或简称为第一类斯特林数,斯特林轮换数。

第一类斯特林数有递推式:
[nm]=[n−1m−1]+(n−1)[n−1m]\begin{bmatrix} n\\ m \end{bmatrix}=\begin{bmatrix} n-1\\ m-1 \end{bmatrix}+(n-1)\begin{bmatrix} n-1\\ m \end{bmatrix}[nm]=[n1m1]+(n1)[n1m]

递推式容易证明,留作习题。

第二类斯特林数

定义{nm}\begin{Bmatrix} n\\ m \end{Bmatrix}{nm}表示将nnn元集合划分为mmm个非空子集的方案数,即第二类斯特林数,或斯特林子集数。

第二类斯特林数有递推式:
{nm}={n−1m−1}+m{n−1m}\begin{Bmatrix} n\\ m \end{Bmatrix}=\begin{Bmatrix} n-1\\ m-1 \end{Bmatrix}+m\begin{Bmatrix} n-1\\ m \end{Bmatrix}{nm}={n1m1}+m{n1m}

递推式容易证明,留作习题。

其他

  • 两类斯特林数的边界条件都是s[0][0]=1s[0][0]=1s[0][0]=1
  • 从递推式可以看出,斯特林数增长比组合数还要快。
  • 斯特林数用于解决组合计数问题,以及用于斯特林反演。这些问题较复杂,单独讨论。

后记

于是皆大欢喜。

http://www.lryc.cn/news/42899.html

相关文章:

  • STL——mapmultimap和setmultiset
  • 2023热门抖音权重查询小程序源码
  • 153.网络安全渗透测试—[Cobalt Strike系列]—[生成hta/exe/宏后门]
  • 如何成为优秀的程序员
  • 多线程(四):线程安全
  • [ROC-RK3568-PC] [Firefly-Android] 10min带你了解Camera的使用
  • C++之模拟实现string
  • SpringBoot实战(十三)集成 Admin
  • mke2fs命令:建立ext2文件系统
  • 免费分享一个springboot+vue的办公系统
  • STM32数据搬运工DMA
  • 4、操作系统——进程间通信(2)(system V-IPC介绍)
  • 基于CentOS Stream 9平台搭建Nacos2.0.4集群以及OpenResty反向代理
  • 老杜MySQL入门基础 第二天
  • Python深度学习实战:人脸关键点(15点)检测pytorch实现
  • linux简单入门
  • 给准备面试网络工程师岗位的应届生一些建议
  • 主线程与子线程之间相互通信(HandlerThread)
  • 13基于双层优化的电动汽车日前-实时两阶段市场竞标
  • REDIS19_zipList压缩列表详解、快递列表 - QuickList、跳表 - SkipList
  • JavaScript 基础 - 第3天
  • 23.3.26总结
  • 【Java学习笔记】37.Java 网络编程
  • Azure OpenAI 官方指南03|DALL-E 的图像生成功能与安全过滤机制
  • 【数据结构】堆
  • 电脑硬盘文件数据误删除/格式化为什么可以恢复? 怎么恢复?谈谈文件删除与恢复背后的原理
  • Gateway服务网关
  • K8S + GitLab + Jenkins自动化发布项目实践(一)
  • 【数据结构篇C++实现】- 堆
  • C++笔试题