当前位置: 首页 > news >正文

[leetcode hot 150]第二十三题,合并K个升序链表

题目:

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

示例 1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[1->4->5,1->3->4,2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

 这题虽然是困难题,但是思路很清晰,很好理解,主要借助最小堆,因为最小堆有着将最小的元素置为堆顶的性质,所以每次取最小值时将最小堆的头推出即可。

并且使用dummy作为结果的头结点返回。代码及思路如下:

  1. 创建最小堆
    • 使用 PriorityQueue 作为最小堆,并定义比较器来比较节点的值。
  2. 初始化最小堆
    • 遍历所有链表,将每个链表的头节点(如果不为空)加入最小堆。
  3. 创建结果链表
    • 使用一个哑节点(dummy node)来简化头节点的处理。
  4. 合并过程
    • 当最小堆不为空时,重复以下步骤:
      a. 从堆中取出值最小的节点。
      b. 将这个节点添加到结果链表的末尾。
      c. 如果这个节点还有下一个节点,将下一个节点加入堆中。
  5. 返回结果
    • 返回哑节点的下一个节点,即合并后链表的真正头节点。

 复杂度分析

  • 时间复杂度:O(N log K),其中 N 是所有节点的总数,K 是链表的数量。
    每个节点都会被加入和取出堆一次,每次堆操作的时间复杂度是 O(log K)。
  • 空间复杂度:O(K),优先队列中最多同时存在 K 个节点。
import java.util.Comparator;
import java.util.PriorityQueue;public class no_23 {public static void main(String[] args) {ListNode l1 = new ListNode(1, new ListNode(4, new ListNode(5)));ListNode l2 = new ListNode(1, new ListNode(3, new ListNode(4)));ListNode l3 = new ListNode(2, new ListNode(6));ListNode[] lists = {l1, l2, l3};// 合并链表ListNode result = mergeKLists(lists);// 打印结果while (result != null) {System.out.print(result.val + " ");result = result.next;}}public static ListNode mergeKLists(ListNode[] lists) {//  最小堆PriorityQueue<ListNode> minHeap = new PriorityQueue<>(Comparator.comparingInt(a -> a.val));//  将所有的链表头节点加入最小堆for (ListNode head : lists) {if (head != null) {minHeap.offer(head);}}ListNode dummy = new ListNode(0);ListNode tail = dummy;while (!minHeap.isEmpty()) {ListNode node = minHeap.poll();tail.next = node;tail = tail.next;if (node.next != null) {minHeap.offer(node.next);}}return dummy.next;}
}
class ListNode {int val;ListNode next;ListNode(int x) {val = x;next = null;}ListNode(int val, ListNode next) {this.val = val;this.next = next;}
}

http://www.lryc.cn/news/394153.html

相关文章:

  • MybatisPlus实现插入/修改数据自动设置时间
  • Java语言程序设计篇一
  • Calicoctl工具学习 —— 筑梦之路
  • Wormhole Filters: Caching Your Hash on Persistent Memory——泛读笔记
  • PyTorch学习之torch.transpose函数
  • Git仓库介绍
  • 人工智能笔记分享
  • 秋招提前批面试经验分享(上)
  • [AIGC] ClickHouse的表引擎介绍
  • 关于新装Centos7无法使用yum下载的解决办法
  • OpenEarthMap:全球高分辨率土地覆盖制图的基准数据集(开源来下载!!!)
  • 工作助手VB开发笔记(1)
  • WAWA鱼曲折的大学四年回忆录
  • Go 依赖注入设计模式
  • 使用React复刻ThreeJS官网示例——keyframes动画
  • 嵌入式linux面试1
  • 智能交通(3)——Learning Phase Competition for Traffic Signal Control
  • 【扩散模型】LCM LoRA:一个通用的Stable Diffusion加速模块
  • 【PYG】pytorch中size和shape有什么不同
  • 备份服务器出错怎么办?
  • 数据库(表)
  • Feign-未完成
  • # [0705] Task06 DDPG 算法、PPO 算法、SAC 算法【理论 only】
  • Open3D 点云CPD算法配准(粗配准)
  • 04-ArcGIS For JavaScript的可视域分析功能
  • Nestjs基础
  • DDL:针对于数据库、数据表、数据字段的操作
  • 昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别
  • Java中 普通for循环, 增强for循环( foreach) List中增删改查的注意事项
  • 昇思25天学习打卡营第19天|LSTM+CRF序列标注