当前位置: 首页 > news >正文

【PYG】pytorch中size和shape有什么不同

  • 一般使用tensor.shape打印维度信息,因为简单直接

在 PyTorch 中,sizeshape 都用于获取张量的维度信息,但它们之间有细微的区别。下面是它们的定义和用法:

  1. size

    • size 是一个方法(size())和属性(size),用于返回张量的维度信息。
    • 使用方法 size() 可以选择获取特定维度的大小。
    • 示例:
      import torchtensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],[2.0, 3.0, 4.0, 5.0],[3.0, 4.0, 5.0, 6.0]])# 使用 size 方法(无参数)
      size_method = tensor.size()
      print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])# 使用 size 方法(带维度参数)
      size_dim1 = tensor.size(1)
      print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4
      
  2. shape

    • shape 是一个属性,直接返回张量的维度信息,表示为一个 torch.Size 对象。
    • shape 属性不能接受参数,因此不能直接用于获取特定维度的大小。
    • 示例:
      import torchtensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],[2.0, 3.0, 4.0, 5.0],[3.0, 4.0, 5.0, 6.0]])# 使用 shape 属性
      shape_attr = tensor.shape
      print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])
      

区别

  • size 方法和属性

    • size 方法可以接受参数,例如 size(dim),用于获取特定维度的大小。
    • size 属性直接返回一个 torch.Size 对象,表示张量的所有维度。
  • shape 属性

    • shape 属性只返回一个 torch.Size 对象,表示张量的所有维度。
    • shape 属性不能直接获取特定维度的大小。

总结

  • size 提供了方法和属性,方法可以接受参数来获取特定维度的大小。

  • shape 仅作为属性,返回整个张量的维度信息,不能接受参数。

  • tensor.size返回<built-in method size of Tensor object at 0x7fee569194a0>

  • tensor.shape返回<class ‘torch.Size’>,tensor.size()返回<class ‘torch.Size’>

示例对比

import torchtensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],[2.0, 3.0, 4.0, 5.0],[3.0, 4.0, 5.0, 6.0]])# 使用 size 属性
size_attr = tensor.size
print(f"使用 size 属性: {size_attr}")  # 输出: 使用 size 属性: torch.Size([3, 4])# 使用 size 方法
size_method = tensor.size()
print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])# 使用 size 方法获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4# 使用 shape 属性
shape_attr = tensor.shape
print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])

通过以上示例可以看出,size 方法和属性提供了更灵活的用法,而 shape 属性则是一个简单快捷的方法来获取整个张量的维度信息。


当你直接访问 tensor.size 而不带括号时,你访问的是一个方法对象,而不是调用该方法。要获取张量的尺寸,你需要调用该方法,使用 tensor.size()。让我们通过一些示例来澄清这一点。

示例解释

首先,我们创建一个张量:

import torchtensor = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]])

获取张量的尺寸

  1. 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])
  1. 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0>

在第二个示例中,我们得到的是一个方法对象的引用,而不是实际的尺寸信息。

获取特定维度的大小

要获取特定维度的大小,你需要调用 size(dim),其中 dim 是你感兴趣的维度索引:

size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3

使用 shape 属性

shape 属性是更直接获取张量尺寸的一种方式:

shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])

总结

  • tensor.size 返回一个方法对象引用。
  • tensor.size() 返回一个 torch.Size 对象,表示张量的形状。
  • tensor.size(dim) 返回特定维度的大小。
  • tensor.shape 直接返回一个 torch.Size 对象,表示张量的形状。

完整示例

import torchtensor = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]])# 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])# 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0># 获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3# 使用 shape 属性
shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])
http://www.lryc.cn/news/394134.html

相关文章:

  • 备份服务器出错怎么办?
  • 数据库(表)
  • Feign-未完成
  • # [0705] Task06 DDPG 算法、PPO 算法、SAC 算法【理论 only】
  • Open3D 点云CPD算法配准(粗配准)
  • 04-ArcGIS For JavaScript的可视域分析功能
  • Nestjs基础
  • DDL:针对于数据库、数据表、数据字段的操作
  • 昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别
  • Java中 普通for循环, 增强for循环( foreach) List中增删改查的注意事项
  • 昇思25天学习打卡营第19天|LSTM+CRF序列标注
  • 微服务: 初识 Spring Cloud
  • 探索InitializingBean:Spring框架中的隐藏宝藏
  • JVM专题之垃圾收集算法
  • 2024年6月后2周重要的大语言模型论文总结:LLM进展、微调、推理和对齐
  • 大数据面试题之数仓(1)
  • [机器学习]-4 Transformer介绍和ChatGPT本质
  • 基于深度学习的电力分配
  • 飞书 API 2-4:如何使用 API 将数据写入数据表
  • 系统设计题-日活月活统计
  • 在CentOS7云服务器下搭建MySQL网络服务详细教程
  • 【数据结构与算法】快速排序霍尔版
  • 无人机5公里WiFi低延迟图传模组,抗干扰、长距离、低延迟,飞睿智能无线通信新标杆
  • Kappa架构
  • 护网在即,助力安服仔漏洞扫描~
  • 3C电子制造行业MES系统,提高企业生产效率
  • C++ 多态和虚函数
  • 七月记录上半
  • Wing FTP Server
  • 【Linux进阶】文件系统6——理解文件操作