当前位置: 首页 > news >正文

高中数学:数列-解数列不等式问题的常用放缩技巧(重难点)

一、放缩技巧

技巧1

在这里插入图片描述
例题
证明:Sn<1
在这里插入图片描述
解:
在这里插入图片描述
变形
在这里插入图片描述
解:
由于第一种情况,我们证明了Sn<1,n≥1,是从第一项就开始放缩的。
发现,无法精确到 3 4 \frac{3}{4} 43

这时,我们就从第二项开始放缩,最终得解。
如果第二项不行,从第三项。以此类推。最终可得解。
在这里插入图片描述
总结
本题,我们知道前两项和
1 4 + 1 9 = 13 36 \frac{1}{4}+\frac{1}{9}=\frac{13}{36} 41+91=3613
那么,我们可以将题目改成
S n < 23 36 S_n<\frac{23}{36} Sn<3623
这个时候,放缩,就要从第三项开始放缩。

技巧2

在1的基础上,提高放缩精确度。
利用平方差公式,进行放缩。
在这里插入图片描述

例题
在这里插入图片描述
解析:
这里有两个不等号,所以,要证明两次
对于,左边的不等号,我们可以采用技巧1的方式
放缩后,结合二次函数的性质,求出单调性发范围,从而得证
而对于,右边的不等号,我们采用技巧1,就不行了
分析原因
技巧1
n 2 > n ∗ ( n − 1 ) = n 2 − n ,可以看出,误差是一个 n 。 n^2>n*(n-1)=n^2-n,可以看出,误差是一个n。 n2>n(n1)=n2n,可以看出,误差是一个n
那么,我们如何放缩了?
这里含有一个 n 2 n^2 n2,所以,我们可以想到平方差公式,写成两项乘积的形式
从而,可以使用裂项求和法。
可以这样放缩
4 4 n 2 = 4 2 n ∗ 2 n < 4 4 n 2 − 1 = 4 ( 2 n − 1 ) ( 2 n + 1 ) \frac{4}{4n^2}=\frac{4}{2n*2n}<\frac{4}{4n^2-1}=\frac{4}{(2n-1)(2n+1)} 4n24=2n2n4<4n214=(2n1)(2n+1)4
或者
1 n 2 < 1 n 2 − 1 = 1 ( n − 1 ) ( n + 1 ) \frac{1}{n^2}<\frac{1}{n^2-1}=\frac{1}{(n-1)(n+1)} n21<n211=(n1)(n+1)1
这两种放缩方式,都可以解决第二个不等号
放缩技巧都是利用平方差公式
放缩原则:减小误差范围。单项,从误差为n,降到误差为常数C

左边不等号
在这里插入图片描述
右边不等号
在这里插入图片描述
换放缩方案
在这里插入图片描述
从第二项开始放缩:
在这里插入图片描述
总结
上面,我们试了4中放缩方式,现在来说明一下他们之间的精确度
比较他们的大小关系如下:
1 n 2 − n > 1 n 2 − 1 > 4 4 n 2 − 1 > 1 n 2 \frac{1}{n^2-n}>\frac{1}{n^2-1}>\frac{4}{4n^2-1}>\frac{1}{n^2} n2n1>n211>4n214>n21
可以发现
4 4 n 2 − 1 \frac{4}{4n^2-1} 4n214
距离
1 n 2 \frac{1}{n^2} n21
更近,所以,这个放缩更精确。
以此类推

二、数列不等式放缩原则

1、提高放缩通项公式的精确度。
2、从后几项开始放缩。

http://www.lryc.cn/news/382406.html

相关文章:

  • [图解]企业应用架构模式2024新译本讲解17-活动记录1
  • [C++深入] --- malloc/free和new/delete
  • Spcok测试代码抛异常场景
  • 【漏洞复现】脸爱云一脸通智慧管理平台 SystemMng 管理用户信息泄露漏洞(XVE-2024-9382)
  • 新手如何入门Web3?
  • React.FC`<ChildComponentProps>`解释
  • 2024-06-24力扣每日一题
  • pyhon模块以及常用的第三方模块
  • shell脚本—快速修改centos网络配置
  • 线程池概念、线程池的不同创建方式、线程池的拒绝策略
  • 示例:WPF中如何绑定ContextMenu和Menu
  • 区块链小故事
  • Java | Leetcode Java题解之第167题两数之和II-输入有序数组
  • 项目训练营第三天
  • 计算机组成原理 | CPU子系统(1)基本概述
  • 无引擎游戏开发(2):最简游戏框架 | EasyX制作井字棋小游戏I
  • 排书 IDA*
  • playwright录制脚本原理
  • awk脚本监控
  • Python高压电容导电体和水文椭圆微分
  • 微信小程序 引入MiniProgram Design失败
  • Java 8 Date and Time API
  • pyppeteer模块经常使用的功能,相关操作案例
  • nginx+keepalived+tomcat集群实验
  • vue脚手架 axios的二次封装
  • 人机恋爱新趋势:与AI男友谈恋爱的甜蜜与挑战
  • 文生视频开源产品的一些调研(一)
  • 一切前端概念,都是纸老虎
  • 使用自签名 TLS 将 Dremio 连接到 MinIO
  • 嵌入式系统软件开发环境_2.一般架构