当前位置: 首页 > news >正文

对称二叉树[简单]

优质博文:IT-BLOG-CN
在这里插入图片描述

一、题目

给你一个二叉树的根节点root, 检查它是否轴对称。

示例 1:

输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

输入:root = [1,2,2,null,3,null,3]
输出:false

树中节点数目在范围[1, 1000]
-100 <= Node.val <= 100

进阶: 你可以运用递归和迭代两种方法解决这个问题吗?

二、代码

【1】递归: 我们将一个树的左右节点相同,转换为两个根节点具有相同的值,每个树的右子树都与另一个树的左子树镜像对称。我们通过一个递归函数,通过同步移动两个指针的方式来遍历树,rootLeftrootRight都指向一个树的根,然后rootLeft右移时,rootRight左移,rootLeft左移时,rootRight右移。检查rootLeftrootRight的值是否相等,如果相等再判断左右子树是否对称。

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public boolean isSymmetric(TreeNode root) {return check(root, root);}private boolean check(TreeNode rootLeft, TreeNode rootRight) {if (rootLeft == null && rootRight == null) {return true;}if (rootLeft == null || rootRight == null) {return false;}return rootLeft.val == rootRight.val && check(rootLeft.left, rootRight.right) && check(rootLeft.right, rootRight.left);}
}
**时间复杂度:** 这里遍历了这棵树,渐进时间复杂度为`O(n)`。  
**空间复杂度:** 这里的空间复杂度和递归使用的栈空间有关,这里递归层数不超过`n`,故渐进空间复杂度为`O(n)`。

【2】迭代: 我们引入一个队列,这是把递归程序改写成迭代程序的常用方法。初始化时我们把根节点入队两次。每次提取两个结点并比较它们的值(队列中每两个连续的结点应该是相等的,而且它们的子树互为镜像),然后将两个结点的左右子结点按相反的顺序插入队列中。当队列为空时,或者我们检测到树不对称(即从队列中取出两个不相等的连续结点)时,该算法结束。

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public boolean isSymmetric(TreeNode root) {return check(root, root);}private boolean check(TreeNode rootLeft, TreeNode rootRight) {Queue<TreeNode> q = new LinkedList<TreeNode>();q.offer(rootLeft);q.offer(rootRight);while(!q.isEmpty()) {rootLeft = q.poll();rootRight = q.poll();if (rootLeft == null && rootRight == null) {continue;}if ((rootLeft == null || rootRight == null) || (rootLeft.val != rootRight.val)) {return false;}q.offer(rootLeft.left);q.offer(rootRight.right);q.offer(rootLeft.right);q.offer(rootRight.left);}return true;}
}

时间复杂度: 这里遍历了这棵树,渐进时间复杂度为O(n)
空间复杂度: 这里需要用一个队列来维护节点,每个节点最多进队一次,出队一次,队列中最多不会超过n个点,故渐进空间复杂度为O(n)

【3】对称二叉树定义: 对于树中 任意两个对称节点LR,一定有:
L.val = R.val :即此两对称节点值相等。
L.left.val = R.right.val :即L的 左子节点 和R的 右子节点 对称。
L.right.val = R.left.val :即L的 右子节点 和R的 左子节点 对称。
根据以上规律,考虑从顶至底递归,判断每对左右节点是否对称,从而判断树是否为对称二叉树。

算法流程: 函数isSymmetric(root)
【1】特例处理: 若根节点 root 为空,则直接返回 truetruetrue 。
【2】返回值: 即 recur(root.left, root.right) ;

函数recur(L, R)
终止条件:
1、当 L 和 R 同时越过叶节点: 此树从顶至底的节点都对称,因此返回 truetruetrue 。
2、当 L 或 R 中只有一个越过叶节点: 此树不对称,因此返回 falsefalsefalse 。
3、当节点 L 值 ≠ 节点 R 值: 此树不对称,因此返回 falsefalsefalse 。

递推工作:
1、判断两节点 L.left 和 R.right 是否对称,即 recur(L.left, R.right) 。
2、判断两节点 L.right 和 R.left 是否对称,即 recur(L.right, R.left) 。
3、返回值: 两对节点都对称时,才是对称树,因此用与逻辑符 && 连接。
在这里插入图片描述

class Solution {public boolean isSymmetric(TreeNode root) {return root == null || recur(root.left, root.right);}boolean recur(TreeNode L, TreeNode R) {if (L == null && R == null) return true;if (L == null || R == null || L.val != R.val) return false;return recur(L.left, R.right) && recur(L.right, R.left);}
}

复杂度分析:
时间复杂度O(N) 其中N为二叉树的节点数量,每次执行recur()可以判断一对节点是否对称,因此最多调用N/2recur()方法。
空间复杂度O(N) 如下图所示,最差情况下(二叉树退化为链表),系统使用O(N)大小的空间。
在这里插入图片描述

http://www.lryc.cn/news/362892.html

相关文章:

  • 判断GIF类型并使用ImageDecoder解析GIF图
  • 数组对象数据修改后页面没有更新,无法进行编辑,校验失效问题
  • 什么是低代码?有什么特点?
  • Kafka 消息保留时长由 24 小时变更为 72 小时的影响分析
  • MySQL A表的字段值更新为B表的字段值
  • TCP 建链(三次握手)和断链(四次握手)
  • SpringBoot集成JOOQ加Mybatis-plus使用@Slf4j日志
  • 浅谈JavaScript中的对象赋值
  • Java面试题-集合
  • 从当当网批量获取图书信息
  • python爬虫之JS逆向——网页数据解析
  • VL53L4CX TOF开发(2)----修改测距范围及测量频率
  • C++之noexcept
  • Kafka之Broker原理
  • RabbitMQ docker安装及使用
  • 篇3:Mapbox Style Specification
  • C#WPF数字大屏项目实战11--质量控制
  • 第九十七节 Java面向对象设计 - Java Object.Finalize方法
  • 【scikit-learn009】异常检测系列:单类支持向量机(OC-SVM)实战总结(看这篇就够了,已更新)
  • 网络管理与运维
  • 数据库查询字段在哪个数据表中
  • 第 400 场 LeetCode 周赛题解
  • 数据结构与算法之Floyd弗洛伊德算法求最短路径
  • Ubuntu系统设置Redis与MySQL登录密码
  • 数据库连接池的概念和原理
  • 国内常用的编程博客网址:技术资源与学习平台
  • 怎么给三极管基极或者MOS管栅极接下拉电阻
  • Java Web学习笔记5——基础标签和样式
  • 01_深度学习基础知识
  • 60、最大公约数