当前位置: 首页 > news >正文

pytorch笔记:自动混合精度(AMP)

1 理论部分

1.1 FP16 VS FP32

  • FP32具有八个指数位和23个小数位,而FP16具有五个指数位和十个小数位
  • Tensor内核支持混合精度数学,即输入为半精度(FP16),输出为全精度(FP32)

1.1.1 使用FP16的优缺点

  • 优点
    • FP16需要较少的内存,因此更易于训练和部署大型神经网络,同时还减少了数据移动(同时可以使用更大的batch)
    • 数学运算的运行速度大大降低了
      • NVIDIA提供的Volta GPU的确切数量是:FP16中为125 TFlops,而FP32中为15.7 TFlops(加速8倍)
  • 缺点:
    • 从FP32转到FP16时,必然会降低精度
      • 但有的时候,这个精度的降低可以忽略不计
      • FP16实际上可以很好地表示大多数权重和渐变。
      • ——>拥有存储和使用FP32所需的所有这些额外位只是浪费。
    • 溢出错误
      • 由于FP16的动态范围比FP32位的狭窄很多,因此,在计算过程中很容易出现上溢出和下溢出
      • 溢出之后就会出现"NaN"的问题

1.2 解决上述FP16的问题

1.2.1 混合精度训练

  • 用FP16做储存和乘法,而用FP32做累加避免舍入误差
  • ——>混合精度训练的策略有效地缓解了舍入误差的问题

1.2.2 损失放大(Loss scaling)

  • 即使使用了混合精度训练,还是存在无法收敛的情况
    • 原因是激活梯度的值太小,造成了溢出。
  • ——>通过使用torch.cuda.amp.GradScaler,通过放大loss的值来防止梯度的下溢出
    • 只在BP时传递梯度信息使用,真正更新权重时还是要把放大的梯度再unscale回去
      • 反向传播前,将损失变化手动增大2^k倍

        • 因此反向传播时得到的中间变量(激活函数梯度)不会溢出;

      • 反向传播后,将权重梯度缩小2^k倍,恢复正常值。

2 torch.cuda.amp

  • AMP(自动混合精度)的关键词有两个:
    • 自动
      • Tensor的dtype类型会自动变化,框架按需自动调整tensor的dtype,当然有些地方还需手动干预
    • 混合精度
      • 采用不止一种精度的Tensor,torch.FloatTensor和torch.HalfTensor

2.1 Pytorch中不同类型的tensor

类型名称位数
torch.DoubleTensor64bit
torch.LongTensor64bit
torch.FloatTensor(默认)32bit
torch.IntTensor32bit
torch.HalfTensor16bit
torch.BFloat16Tensor16bit
torch.ShortTensor16bit
torch.ByteTensor(无符号)8bit
torch.CharTensor8bit
torch.BoolTensorBoolean

2.2 在AMP上下文中,被自动转化为半精度浮点型的参数:

__matmul__
addbmm
addmm
addmv
addr
baddbmm
bmm
chain_matmul
conv1d
conv2d
conv3d
conv_transpose1d
conv_transpose2d
conv_transpose3d
linear
matmul
mm
mv
prelu

2.3 autocast

from torch.cuda.amp import autocast as autocastmodel = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensoroptimizer = optim.SGD(model.parameters(), ...)for input, target in data:optimizer.zero_grad()with autocast():output = model(input)loss = loss_fn(output, target)'''自动混合精度环境包含了前向过程(模型的输出)和loss的计算把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算进入autocast的上下文时,tensor可以是任何类型不需要在model或者input上手工调用.half() ,框架会自动做'''loss.backward()optimizer.step()# 反向传播在autocast上下文之外

 2.4 GradScaler

在2.3的基础上增加,反向传播时增加梯度,以防止下溢出

from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScalermodel = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensoroptimizer = optim.SGD(model.parameters(), ...)scaler = GradScaler()
# 在训练最开始之前实例化一个GradScaler对象for epoch in epochs:for input, target in data:optimizer.zero_grad()with autocast():output = model(input)loss = loss_fn(output, target)'''自动混合精度环境包含了前向过程(模型的输出)和loss的计算把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算进入autocast的上下文时,tensor可以是任何类型不需要在model或者input上手工调用.half() ,框架会自动做'''scaler.scale(loss).backward()# Scales loss. 为了梯度放大,防止下溢出# 代替原来的loss.backward()scaler.step(optimizer)'''scaler.step() 首先把梯度的值unscale回来.如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新(不被破坏)'''scaler.update()'''准备着,看是否要增大scaler'''
  •  scaler的大小在每次迭代中动态的估计
    • 为了尽可能的减少梯度underflow,scaler应该更大
    • 但是如果太大的话,半精度浮点型的tensor又容易overflow(变成inf或者NaN)。
  • ——>动态估计的原理就是在不出现inf或者NaN梯度值的情况下尽可能的增大scaler的值

3 一些tips

  • 为了保证计算不溢出,首先保证人工设定的常数不溢出。如epsilon,INF等
  • Dimension最好是8的倍数:维度是8的倍数,性能最好
  • 涉及sum的操作要小心,容易溢出
    • 比如softmax操作,建议用官方API,并定义成layer写在模型初始化里
  • 如果遇到以下的报错:
    • RuntimeError: expected scalar type float but found c10::Half
    • 需要手动在tensor上调用.float()
http://www.lryc.cn/news/361423.html

相关文章:

  • R语言ggplot2包绘制世界地图
  • 【Linux】Linux的权限_1
  • 日语_远程办公常用日语单词
  • MTK 平台项目security boot 开启/关闭 及 系统签名流程
  • JDBC连接MySQL
  • 【Qt】【模型视图架构】 在项目视图中启用拖放
  • B端产品无爆款,说有的都是忽悠和外行!
  • 腾讯云的身份证核验,找不到这个类
  • vue3 vue-draggable-next 实现拖拽穿梭框效果
  • FreeRTOS【16】直达任务通知使用
  • 关于软件<PDF文档管理系统V1.0>的介绍
  • Java面试题-Tomcat初级面试题
  • 红队内网攻防渗透:内网渗透之windows内网权限提升技术:数据库篇
  • rust嵌入式开发之总结
  • 【制作100个unity游戏之27】使用unity复刻经典游戏《植物大战僵尸》,制作属于自己的植物大战僵尸随机版和杂交版6(附带项目源码)
  • 回溯算法指组合总和
  • java-stream转换map key重复报错解决小记
  • 王春城 | 如何解决精益转型过程中的信任问题?
  • Ubuntu Nvidia Docker单机多卡环境配置
  • 小公司的软件开发IT工具箱
  • 代码随想录算法训练营第四十四天| 背包问题、背包问题之滚动数组、416. 分割等和子集
  • 最新一站式AI创作中文系统网站源码+系统部署+支持GPT对话、Midjourney绘画、Suno音乐、GPT-4o文档分析等大模型
  • C# 语言类型(二)—预定义类型之字符串及字符类型简述
  • 微信小程序canvas画图使用百分比适配不同机型屏幕达到任何屏幕比例皆可!完美适配任何机型!指定canvas尺寸适配亦可!保证全网唯一完美
  • Redis-02
  • 如何编辑pdf文件内容?编辑技巧大揭秘,秒变办公达人!
  • Linux Shell Script 编写入门
  • 不是从APP store下载的APP在mac上一直提示有损坏,打不开怎么办?
  • ubuntu22.04部署docker版zlmediakit和源码运行wvp-GB28181-pro
  • MySQL表的增删改查初阶(上篇)