当前位置: 首页 > news >正文

5.28.1 使用卷积神经网络检测乳腺癌

深度学习技术正在彻底改变医学图像分析领域,因此在本研究中,我们提出了卷积神经网络 (CNN) 用于乳腺肿块检测,以最大限度地减少手动分析的开销。CNN 架构专为特征提取阶段而设计,并采用了更快的 R-CNN 的区域提议网络 (RPN) 和感兴趣区域 (ROI) 部分,以实现乳腺肿块异常的自动检测。

模型可检测乳房 X 光检查 (MG) 图像中的肿块区域,并一次性将其分类为良性或恶性异常。对于所提出的模型,MG 图像是从本地的不同医院收集的。图像经过不同的预处理阶段,例如高斯滤波器、中值滤波器、双边滤波器,并从 MG 图像的背景中提取乳房区域。

1. 介绍

微钙化和肿块是乳腺癌的最早迹象,只能使用成像方式检测到。根据乳腺异常的侵袭阶段,异常可能是良性的或恶性的。与检测微钙化相比,检测乳房组织中的肿块更具挑战性。

Organization 等人 (2006) 的研究表明,种族、地理位置和其他风险因素会决定乳腺癌的发展。在这项工作中,我们提出了基于卷积神经网络 (CNN) 的乳腺肿块检测方法,以同时定位肿块并将其分类为良性或恶性异常。为了训练、验证和测试该方法,我们从不同站点收集了数据集。

2. 方法论

2.1 数据集

这项工作仅考虑了收集的 MG 图像中的肿块异常,即 1588 张具有肿块异常的完整乳房 X 射线图像,这些图像由专业放射科医生使用 labelMe Russell et al (2008) 注释工具进行注释。

2.2 方法

开发了基于 CNN 的乳腺肿块异常检测模型,该模型可自动检测肿块异常的感兴趣区域,并将其分类为 MG 图像中的良性或恶性。

对 INbreast Moreira 等人(2012 年)拍摄的 116 张完整 MG 图像和 CBIS-DDSM Lee 等人(2017 年)拍摄的 1380 张完整 MG 图像进行了预处理和增强,以便为训练我们的模型和本地收集的数据集提供初始权重。

2.2.1 数据收集

表 1 中描述的数据集是从埃塞俄比亚的不同医院收集的

2.2.2 MG图像预处理

为了提高数据质量并以适合深度学习训练的方式准备数据,对数据进行了预处理。为了消除图像中的噪声,应用了高斯滤波、中值滤波和双边滤波。随后使用对比度限制自适应直方图均衡化 (CLAHE) 增强图像,然后进行形态学操作和 OTSU 阈值处理,以从背景中提取乳房区域,并从 MG 中去除非乳房区域部分,例如伪影、标签、患者资料等。

2.2.3 模型训练

Bounding box regressor(边框回归器)在计算机视觉和目标检测中用于预测目标物体的边界框(Bounding Box)的位置和大小。其目标是从给定的物体位置(通常是一个初始边界框)开始,通过学习和预测修正值,使得模型能够准确地预测物体的边界框。这些修正值通常是相对于初始边界框的偏移量,包括水平偏移、垂直偏移、宽度缩放和高度缩放。

特征提取部分有一系列五个卷积层,每个卷积层分别有 (64, 128, 256, 512,512) 数量的卷积核。每个卷积层后面都是 Relu 激活层、批量归一化层、最大池化层和 dropout,但第二层除外,它既没有 dropout 也没有最大池化。

通过调整 Faster R-CNN Ren et al (2015) 的 ROI Pooling 部分的锚点边界框尺度、RPN 和最大池化的比率,它被用于检测肿块异常。我们使用了 9 个锚点,锚点框尺度分别为 32 × 32、64 × 64 和 128 × 128 像素,锚点框宽高比为 [1, 1]、[\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}] 和 [\frac{2}{\sqrt{2}}, \frac{1}{\sqrt{2}}],ROI 最大池化大小为 (5,5)。

使用 0.9 动量、500 个 epoch、0.00001 学习率、RPN 的 Adam 和整个模型的随机梯度下降 (SGD) 作为优化器。所提出的模型是使用 Python 和 Keras 实现的,其中 Tensorflow 用作后端。

3. 结果与讨论

描述了一种基于 CNN 的方法,用于检测肿块区域并将其分为良性和恶性。研究了在本地多中心 MG 数据集中一次性检测、定位肿块异常并将其分类为良性或恶性。很难将我们的检测结果与以前的本地研究直接进行比较。因此,我们对基于 VGG 的更快 R-CNN Ren et al (2015) 架构进行了训练、验证和测试,以便使用收集到的数据集与我们模型的性能进行比较。在收集到的所有图像中,选择了 1588 张包含肿块异常的完整 MG 图像,然后由专业放射科医生使用 labelMeRussell et al (2008) 注释工具对其进行注释。在 1588 张 MG 图像中,有 1683 个乳腺肿块异常。数据集被随机分成 80% 用于训练、10% 用于验证和 10% 用于测试。

对 INbreast Moreira 等人(2012 年)、CBIS-DDIS Lee 等人(2017 年)执行了相同的流水线预处理,并为所提出的模型和基于 VGG 的Faster R-CNN 收集了本地 MG 数据集。

在预处理阶段:将不同的成像格式(例如 DICOM 医学图像格式)转换为 .png 图像格式,去除噪音,从背景中提取乳房区域,删除患者信息,清除伪影和其他不需要的物体。分别使用 3×3 和 5×5 大小的高斯、中等和横向滤波器进行降噪,并使用 MSE 评估去噪结果。在考虑的两种卷积核尺寸中,最终使用了 3×3 大小的卷积核。此外,使用 CLAHE 增强去噪后的 MG 图像,然后提取乳房区域并使用 OTSU 和形态学操作去除不需要的伪影。

http://www.lryc.cn/news/359903.html

相关文章:

  • 【JavaScript脚本宇宙】JavaScript日期处理神器: 6款顶级库解析
  • C++基础编程100题-002 OpenJudge-1.1-04 输出保留3位小数的浮点数
  • Linux挂载硬盘
  • 用户购物性别模型标签(USG)之决策树模型
  • Mock的用法
  • 内网-win1
  • 中国电子学会(CEIT)2023年09月真题C语言软件编程等级考试三级(含详细解析答案)
  • golang线程池ants-四种使用方法
  • Flutter开发效率提升1000%,Flutter Quick教程之对组件进行拖拽与接收
  • 揭秘小程序商城的团购奇迹:独特模式引领盈利新纪元
  • ssm_mysql_高校自习室预约系统(源码)
  • AI自动化办公:批量将Excel表格英文内容翻译为中文
  • PPT 隐藏开启对象图层
  • PHP火狼大灌篮游戏源码微信+手机wap源码带控制
  • 推荐几首听无数遍也听不腻的好歌(1)
  • 【全开源】Java短剧系统微信小程序+H5+微信公众号+APP 源码
  • 基于Springboot驾校预约平台小程序的设计与实现(源码+数据库+文档)
  • python列表基本运算
  • Pytorch实用教程:pytorch中nn.Linear()用法详解 | 构建多层感知机 | nn.Module的作用 | nn.Sequential的作用
  • 如何利用unicloud阿里云云函数实现文件包括图片或文件上传,unicloud云函数写法一览
  • Django序列化器中is_valid和validate
  • 关于Golang中自定义包的简单使用-Go Mod
  • Dijkstra求最短路篇二(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)
  • Dijkstra求最短路篇一(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)
  • 计算机组成原理06:浮点数运算
  • opencascade 快速显示AIS_ConnectedInteractive源码学习
  • CentOS系统上安装单机版Redis教程
  • 纯Java实现Google地图的KMZ和KML文件的解析
  • k8s自定义资源你会创建吗
  • CATIA二次开发VBA入门(4)——进程外开发环境搭建,vb.net在Visual Studio中开发,创建圆柱曲面的宏录制到二次开发案例