当前位置: 首页 > news >正文

决策树模型-预测用户是否购买某母婴产品

1,场景描述

假设我们是京东的数据分析师,负责分析母婴产品的购买行为。我们想预测用户是否会购买一款新上线的母婴产品。为了进行预测,我们将利用用户的历史购买数据、浏览行为和其他特征,通过决策树模型进行分析,并提供相应的营销策略建议。

2,具体需求

  1. 模拟用户数据:包括用户年龄、是否有孩子、浏览母婴产品的频率、历史购买金额、是否参加过促销活动等。
  2. 构建决策树模型:根据这些数据训练决策树模型,预测用户是否会购买新产品。
  3. 模型评估与分析:对模型进行评估,并根据模型的结果提供建议。

3,具体代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
from sklearn import tree# 模拟用户数据
np.random.seed(42)
num_samples = 1000
data = {'age': np.random.randint(18, 45, num_samples),'has_kids': np.random.choice([0, 1], num_samples),'browse_frequency': np.random.randint(1, 30, num_samples),  # 浏览母婴产品频率(次/月)'purchase_history_amount': np.random.uniform(100, 5000, num_samples),  # 历史购买金额'participated_promotion': np.random.choice([0, 1], num_samples),  # 是否参加过促销活动'bought_new_product': np.random.choice([0, 1], num_samples, p=[0.7, 0.3])  # 是否购买新产品
}
df = pd.DataFrame(data)# 切割自变量和因变量
X = df.drop('bought_new_product', axis=1)
y = df['bought_new_product']# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 训练决策树模型
clf = DecisionTreeClassifier(max_depth=4, random_state=42)
clf.fit(X_train, y_train)# 预测
y_pred = clf.predict(X_test)# 评估模型
print("分类报告:")
print(classification_report(y_test, y_pred))print("混淆矩阵:")
print(confusion_matrix(y_test, y_pred))# 绘制决策树
plt.figure(figsize=(20,10))
tree.plot_tree(clf, feature_names=X.columns, class_names=['Not Bought', 'Bought'], filled=True)
plt.show()# 模型结果分析与建议
def analyze_feature_importance(model, feature_names):importance = model.feature_importances_feature_importance = pd.DataFrame({'feature': feature_names, 'importance': importance})return feature_importance.sort_values(by='importance', ascending=False)feature_importance = analyze_feature_importance(clf, X.columns)
print("特征重要性:")
print(feature_importance)# 建议
print("建议:")
print("1. 根据特征重要性分析,历史购买金额和浏览母婴产品的频率对新产品购买行为有较大影响,应重点关注这些高频浏览和高消费的用户。")
print("2. 对于没有孩子但有较高浏览频率的用户,可以推送相关的促销活动,增加购买可能性。")
print("3. 针对参加过促销活动但未购买新产品的用户,分析促销活动的效果,优化活动策略。")
print("4. 通过数据分析识别出高潜力用户,重点进行精准营销,提高新产品的销售量。")

0c8b69fe9ac746ed9cb55e44125b2077.png

4,代码解释

  1. 模拟用户数据:生成了包含用户年龄、是否有孩子、浏览母婴产品的频率、历史购买金额、是否参加过促销活动和是否购买新产品的数据集。
  2. 数据预处理:将数据集分为自变量和因变量,并将数据集分为训练集和测试集。
  3. 训练模型:使用训练集训练决策树模型,并使用测试集进行预测。
  4. 评估模型:输出分类报告和混淆矩阵,评估模型性能。
  5. 绘制决策树:展示决策树结构,帮助理解模型的决策过程。
  6. 特征重要性分析:分析各特征对新产品购买行为的重要性,提供有针对性的营销建议。

5,分析结果与建议

通过对决策树模型的分析,可以得到以下建议:

  1. 重点关注高频浏览和高消费的用户:这些用户更有可能购买新产品,应针对他们制定个性化的营销策略。
  2. 推送相关促销活动:对于没有孩子但浏览频率较高的用户,可以推送相关的促销活动,以提高他们的购买意愿。
  3. 优化促销活动:分析参加过促销活动但未购买新产品的用户,了解促销活动效果,进一步优化促销策略。
  4. 精准营销:通过数据分析识别高潜力用户,进行精准营销,提升新产品的销售量。

通过这样的分析,可以帮助京东更好地了解用户的购买行为,从而制定更有效的营销策略,提高新产品的销售业绩。

(交个朋友/技术接单/ai办公/性价比资源)

d32d8cb89f6b4e2bb6fc5c6c109df305.png

 

 

 

 

 

 

 

http://www.lryc.cn/news/357535.html

相关文章:

  • 工具使用-网络性能测试工具(iperf)-TCP 和 UDP 的吞吐量-包转发率参数的理解
  • 什么是JS引擎
  • 前端手写文件上传;使用input实现文件拖动上传
  • Flutter 中的 PhysicalModel 小部件:全面指南
  • Flutter 中的 Center 小部件:全面指南
  • windows 执行node报错 800A1391
  • 无人机操作界面来了,起点就很高呀。
  • Android 11 AudioPolicyService 启动流程
  • java中static关键字面试五连问
  • 基于文本来推荐相似酒店
  • 红队内网攻防渗透:内网渗透之前置知识外网权限提升技术
  • 【漏洞复现】大华智能物联综合管理平台 log4j远程代码执行漏洞
  • OrangePi AIpro测评
  • 写代码之前一定要提前想好思路
  • 「清新题精讲」Skiers
  • Transformer详解(8)-基于transformer的英文到中文翻译模型
  • 算法的时间复杂度(详解)
  • Flutter 中的 NestedScrollViewViewport 小部件:全面指南
  • 断开自定义模块与自定义库的链接
  • 粉丝问,有没有UI的统计页面,安排!
  • Nginx R31 doc-17-debugging 调试
  • python -【一】基础语法
  • 数据结构 | 详解二叉树——堆与堆排序
  • vb.net,C#强制结束进程,“优雅”的退出方式
  • 牛客热题:数据流中的中位数
  • JavaScript-JavaWeb
  • vue组件通讯$parent和$children获取单签组件的⽗组件和当前组件的⼦组件的例子
  • Util和utils
  • 拷贝构造、移动构造、拷贝赋值、移动赋值
  • Python3 笔记:math模块