当前位置: 首页 > news >正文

时间(空间)复杂度(结构篇)

目录

前言:

一、时间复杂度

1.1 时间复杂度的定义

1.2 时间复杂度的分析

表示方法: 

1.3 常见的时间复杂度

1.4 时间复杂度的计算以及简单的分析

冒泡排序

折半查找(二分查找)

斐波那契数列(递归)

二、空间复杂度

2.1 空间复杂度的定义

2.2 空间复杂度的分析

2.3 常见的空间复杂度

2.4 空间复杂度的计算以及简单分析

冒泡排序

斐波那契数列(迭代)


复杂度是计算机科学中的一个基础概念,它帮助我们理解和评估算法的效率,对于算法设计和优化至关重要。算法的复杂度通常分为时间复杂度和空间复杂度两个方面。

前言:

众所周知:程序 = 算法  + 数据结构;衡量一个算法的标准就是算法效率。那么,算法效率是指算法执行的时间和所需的存储空间。在计算机科学中,算法效率通常通过时间复杂度空间复杂度来衡量。

一、时间复杂度

1.1 时间复杂度的定义

  • 时间复杂度是衡量算法执行时间随输入规模增长而变化的度量,它指示了算法的效率和性能。
  • 时间复杂度通常使用大O符号(O)来表示,表示算法执行时间的上界。
  • 时间复杂度描述的是算法执行时间与输入规模的增长趋势,而不是具体的执行时间。

1.2 时间复杂度的分析

表示方法: 

大O 的表示法:是用于描述函数渐进行为的数学符号。

算法中的基本操作的执行次数,为算法 的时间复杂度。随着问题规模 n 的伴随某个函数f(n)变话记作:  T(n) = O(f(n)) 

  • 一般的忽略常数项。
  • 只保留最高次幂项。

注意:我们通常表示的是一个数量级,而不是具体值或某个函数。

1.3 常见的时间复杂度

  • 常数时间复杂度:O(1),表示算法的执行时间不随输入规模的增长而变化,是最理想的情况。 
  • 对数时间复杂度:O(log n),通常出现在二分查找等分治算法中。 
  • 线性时间复杂度:O(n),表示算法的执行时间与输入规模成正比。 
  • 线性对数时间复杂度:O(n log n),通常出现在快速排序、归并排序等分治算法中。 
  • 平方时间复杂度:O(n^2),通常出现在嵌套循环的算法中。 
  • 指数时间复杂度:O(2^n),通常出现在递归算法中。 
  • 多项式时间复杂度:O(n^k),k可能是大于 2 的正整数,这意味着算法在大规模数据上的性能下降较快。

1.4 时间复杂度的计算以及简单的分析

通过分析算法中基本操作的执行次数,并根据输入规模的增长情况确定时间复杂度。

三种情况:

  • 最好时间复杂度
  • 平均时间复杂度
  • 最坏时间复杂度
冒泡排序
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

 分析:冒泡排序的时间复杂度:O(N^2)

解释:有N个个数,每次移动N-1次,剩下(N-1)移动(N-2)次,总共执行(N*(N-1)/2)次,根据大O表示就是:

折半查找(二分查找)
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;while (begin < end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid;elsereturn mid;}return -1;
}

分析:折半查找的时间复杂度:最好是O( 1 ) ,最坏是O( log N ) ,该式表示:以2为底N的对数(仅限在计算机中表示)

解释:在查找的时候每次折半,也就是除以 2,一次是2^1,两次是 2^2,推广到N次数。

斐波那契数列(递归)
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

分析:斐波那契数列时间复杂度:O(2^n)

解释:

二、空间复杂度

2.1 空间复杂度的定义

  • 空间复杂度(Space Complexity)是衡量算法在执行过程中临时占用存储空间大小的量度。
  • 它反映了算法所需存储空间与输入数据大小之间的关系。
  • 空间复杂度通常用大O表示法来表示。

2.2 空间复杂度的分析

同时间复杂度一样用大O表示法表示;也是表示一个数量级。记作:S(n) = O(f(n)) 

2.3 常见的空间复杂度

  • 常数阶:如果算法的空间复杂度不随问题规模 n 的变化而变化,即算法所需的存储空间是一个常数,那么空间复杂度为 O(1)。
  • 线性阶:如果算法所需的存储空间与问题规模 n 成正比,即算法所需的存储空间随着 n 的增加而线性增加,那么空间复杂度为 O(n)。
  • 多项式阶:如果算法所需的存储空间与问题规模 n 的关系可以表示为多项式函数,即空间复杂度为 O(n^k),其中 k 是一个正整数。
  • 对数阶:如果算法所需的存储空间与问题规模 n 的关系可以表示为对数函数,即空间复杂度为 O(log n)。
  • 指数阶:如果算法所需的存储空间与问题规模 n 的关系可以表示为指数函数,即空间复杂度为 O(2^n)。

2.4 空间复杂度的计算以及简单分析

计算空间复杂度时,需要考虑算法在运行过程中显式申请的额外空间,而不是函数运行时所需要的栈空间,后者在编译期间已经确定好了

冒泡排序
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

分析:冒泡排序空间复杂度:O(1)

解释:仅仅使用了一个额外变量。

斐波那契数列(迭代)
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n == 0)return NULL;long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n; ++i){fibArray[i] = fibArray[i - 1] + fibArray[i - 2];}return fibArray;
}

分析:斐波那契数列空间复杂度:O( N )

解释:开辟了N个空间。

http://www.lryc.cn/news/353666.html

相关文章:

  • react记录部署
  • 【计算机毕业设计】基于SSM+Vue的校园美食交流系统【源码+lw+部署文档】
  • 「YashanDB迁移体验官」Mysql生产环境迁移至YashanDB数据库深度体验
  • qmt量化交易策略小白学习笔记第4期【qmt如何获取获取行情数据--内置python使用方法】
  • XXE(XML外部实体注入)
  • kafka 案例
  • 别被“涨价“带跑,性价比才是消费真理
  • GEE深度学习——使用Tensorflow进行神经网络DNN土地分类
  • 死锁示例(python、go)
  • Spring Cloud 面试题(五)
  • 源码编译安装LAMP
  • html5网页-浏览器中实现高德地图定位功能
  • C从零开始实现贪吃蛇大作战
  • 国内外相机在LabVIEW图像处理的对比
  • 第四十五天 | 322.零钱兑换
  • 3D 生成重建011-LucidDreamer 优化SDS过平滑结果的一种探索
  • ES6 笔记04
  • 中间件-------RabbitMQ
  • flink Data Source数据源
  • 网络七层模型与云计算中的网络服务
  • word一按空格就换行怎么办?word文本之间添加空格就换行怎么办?
  • Python 遍历字典的方法,你都掌握了吗
  • MySQL 8.4.0 LTS 变更解析:I_S 表、权限、关键字和客户端
  • LeetCode 124 —— 二叉树中的最大路径和
  • 美甲店会员预约系统管理小程序的作用是什么
  • ..堆..
  • 【LLM多模态】综述Visual Instruction Tuning towards General-Purpose Multimodal Model
  • 探索Linux中的神奇工具:重定向符的妙用
  • Kubernetes 文档 / 概念 / 工作负载 / 工作负载管理 / Job
  • 办公自动化-Python如何提取Word标题并保存到Excel中?