当前位置: 首页 > news >正文

机器人工具箱学习(三)

一、动力学方程

  机器人的动力学公式描述如下:
在这里插入图片描述
式中, τ \boldsymbol{\tau} τ表示关节驱动力矩矢量; q , q ˙ , q ¨ \boldsymbol{q} ,\; \dot{\boldsymbol { q }} ,\; \ddot{\boldsymbol { q }} q,q˙,q¨分别为广义的关节位置、速度和加速度; M \boldsymbol{M} M为关节的空间惯量矩阵; C \boldsymbol{C} C为科氏力和离心力耦合矩阵; G \boldsymbol{G} G为重力; F f \boldsymbol{F}_f Ff为关节摩擦力。

  机器人的动力学参数包括惯性参数和摩擦参数。
  (1)惯性参数有:连杆质量 m m m、相对于连杆坐标系的质心矢量 r \boldsymbol{r} r和转动惯量矩阵 I \boldsymbol{I} I。其中,质心矢量 r \boldsymbol{r} r可以表示为:
在这里插入图片描述
式中, r x r_x rx r y r_y ry r z r_z rz分别表示质心矢量 r \boldsymbol{r} r在连杆坐标系下三个坐标轴的分量。转动惯量矩阵 I \boldsymbol{I} I为包含六个独立元素的二维矩阵,表示为:
在这里插入图片描述
式中,主对角元素为惯性矩,非主对角元素为惯性积。

  (2)机器人动力学建模中常用的摩擦模型为库伦-粘滞摩擦模型,其表达式为:
在这里插入图片描述
式中, f c f_c fc f v f_v fv分别表示库伦摩擦系数和粘滞摩擦系数; v v v表示关节速度。注意:对于库伦摩擦系数的处理不同人有不同的处理,有的地方认为库伦摩擦是对称的,即当机器人关节正向旋转和反向旋转时,库伦摩擦力大小相等,方向相反,也即 f c + = f c − f_c^+ = f_c^- fc+=fc;也有的地方认为库伦摩擦是非对称的,即当机器人关节正向旋转和反向旋转时,库伦摩擦力大小不相等。

二、机器人工具箱描述动力学方程

2.1 动力学参数赋值

  在机器人工具箱中,提供了如下动力学参数输入接口:
  (1)Link.m:表示连杆的质量;
  (2)Link.r:表示连杆的质心矢量;
  (3)Link.I:表示连杆的惯量矩阵;
  (4)Link.Jm:表示驱动电机的转动惯量;
  (5)Link.B:表示粘滞摩擦系数;
  (6)Link.Tc:表示库伦摩擦系数;
  (7)Link.G:表示电机齿轮传动比(默认为1)

  这里仍然以3-DOF平面机械臂为例:

%% 动力学
% RRR机械臂
clear;
close all;
clc;%               theta(z)   d(z)     a(x)     alpha(x)  
RRR_L(1) = Link([  0       0        1        0    ],'standard');
RRR_L(2) = Link([  0       0      0.8        0    ],'standard');
RRR_L(3) = Link([  0       0      0.6        0    ],'standard');% 连杆1动力学参数
RRR_L(1).m = 4.0;
RRR_L(1).r = [0.12; 0.08; 0.31];
RRR_L(1).I = [0.32 0.01 0.02;0.01 0.12 0.11;0.02 0.11 0.41];
RRR_L(1).Jm = 0.0012;
RRR_L(1).B = 0.00148;
RRR_L(1).Tc = [+0.395, -0.435];
RRR_L(1).G = 1.2;% 连杆2动力学参数
RRR_L(2).m = 15.2;
RRR_L(2).r = [-0.475; 0.097; 0.06];
RRR_L(2).I = [1.21 0.21 0.32;0.21 0.52 0.11;0.32 0.11 0.51];
RRR_L(2).Jm = 0.0048;
RRR_L(2).B = 0.00329;
RRR_L(2).Tc = [+0.462; -0.561];
RRR_L(2).G = 1.4;% 连杆3动力学参数
RRR_L(3).m = 0.6;
RRR_L(3).r = [0.01; 0.097; 0.016];
RRR_L(3).I = [0.021 0.03 0.382;0.03 0.152 0.11;0.382 0.11 0.651];
RRR_L(3).Jm = 0.0061;
RRR_L(3).B = 0.00429;
RRR_L(3).Tc = [+0.262; -0.661];
RRR_L(3).G = 1.7;three_link = SerialLink(RRR_L, 'name', '3-DOF');

  采用dyn( )函数可以查看动力学参数,如图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 动力学方程中的各项表示

(1)空间惯量矩阵 M ( q ) \boldsymbol{M}(\boldsymbol{q}) M(q)
  机器人的空间惯量是机器人各关节的位姿的函数,在不同机器人位形时具有不同的值。机器人工具箱中可以调用robot.inertia(q)函数获得空间惯量矩阵。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°时,其空间惯量矩阵为:
在这里插入图片描述

(2)科氏力和离心力耦合矩阵 C ( q , q ˙ ) \boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}}) C(q,q˙)
  科氏力和离心力耦合矩阵是关节位置和速度的函数。机器人工具箱中可以调用robot.coriolis(q, qd)函数获得该耦合矩阵。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°,三个关节速度为10°/s、20°/s和30°/s时,其科氏力和离心力耦合矩阵为:
在这里插入图片描述

(3)重力矩阵 G ( q ) \boldsymbol{G}(\boldsymbol{q}) G(q)
  重力矩阵与机器人的位形有关,是对各关节所受重力的描述,其值不受机器人的运动的影响。机器人工具箱中可以调用robot.gravload(q, grav)函数来获得重力矩阵,其中grav自定义重力加速度向量。
  例如:当3-DOF平面机械臂三个关节角度为30°、45°和60°,重力加速度向量为 y y y轴负向,即grav = [0; -9.8; 0]。重力矩阵为:
在这里插入图片描述

(4)摩擦力矩阵 F f ( q ˙ ) \boldsymbol{F}_f(\dot{\boldsymbol{q}}) Ff(q˙)
  摩擦力矩阵是由各关节的给定摩擦参数数值决定的,大小与各关节的速度有关。机器人工具箱中可以调用robot.friction(qd)函数来获得重力矩阵。
  例如:当3-DOF平面机械臂三个关节速度为10°/s、20°/s和30°/s时,其摩擦力矩阵为:
在这里插入图片描述

三、逆动力学分析

  机器人的逆动力学分析是在给定机器人关节位置、速度和加速度时,计算得到机器人各关节所需要的力和力矩大小。机器人工具箱中可以调用robot.rne(q, qd, qdd, grav)函数来计算逆动力学。其中,q, qd, qdd分别表示机器人关节位置、速度和加速度;grav表示自定义的重力加速度矢量。除此之外,还可以添加参数fext,表示末端执行器受到的外力和力矩 [ F x , F y , F z , τ x , τ y , τ z ] [F_x,\: F_y,\: F_z,\: \tau_x,\: \tau_y,\: \tau_z] [Fx,Fy,Fz,τx,τy,τz]
  例子:让3-DOF平面机械臂按照下图所示的轨迹运动。
在这里插入图片描述

代码:

%% 动力学
% RRR机械臂
clear;
close all;
clc;%               theta(z)   d(z)     a(x)     alpha(x)  
RRR_L(1) = Link([  0       0        1        0    ],'standard');
RRR_L(2) = Link([  0       0      0.8        0    ],'standard');
RRR_L(3) = Link([  0       0      0.6        0    ],'standard');% 连杆1动力学参数
RRR_L(1).m = 4.0;
RRR_L(1).r = [0.12; 0.08; 0.31];
RRR_L(1).I = [0.32 0.01 0.02;0.01 0.12 0.11;0.02 0.11 0.41];
RRR_L(1).Jm = 0.0012;
RRR_L(1).B = 0.00148;
RRR_L(1).Tc = [+0.395, -0.435];
RRR_L(1).G = 1.2;% 连杆2动力学参数
RRR_L(2).m = 15.2;
RRR_L(2).r = [-0.475; 0.097; 0.06];
RRR_L(2).I = [1.21 0.21 0.32;0.21 0.52 0.11;0.32 0.11 0.51];
RRR_L(2).Jm = 0.0048;
RRR_L(2).B = 0.00329;
RRR_L(2).Tc = [+0.462; -0.561];
RRR_L(2).G = 1.4;% 连杆3动力学参数
RRR_L(3).m = 5.6;
RRR_L(3).r = [0.01; 0.097; 0.016];
RRR_L(3).I = [0.921 0.03 0.382;0.03 0.252 0.11;0.382 0.11 1.251];
RRR_L(3).Jm = 0.0061;
RRR_L(3).B = 0.00429;
RRR_L(3).Tc = [+0.262; -0.661];
RRR_L(3).G = 1.7;three_link = SerialLink(RRR_L, 'name', '3-DOF');delta_t = 0.02;
t = 0:delta_t:4;
m = length(t);theta1 = 60*sin(4*pi*t/4);
theta2 = 60*sin(2*pi*t/4);
theta3 = 30*sin(2*pi*t/4);theta1_d = 60*pi*cos(4*pi*t/4);
theta2_d = 30*pi*cos(2*pi*t/4);
theta3_d = 15*pi*cos(2*pi*t/4);theta1_dd = -60*pi*pi*sin(4*pi*t/4);
theta2_dd = -15*pi*pi*sin(2*pi*t/4);
theta3_dd = -7.5*pi*pi*sin(2*pi*t/4);q = [theta1;theta2;theta3]'*pi/180;
qd = [theta1_d;theta2_d;theta3_d]'*pi/180;
qdd = [theta1_dd;theta2_dd;theta3_dd]'*pi/180;% 关节位置、速度、加速度绘图
figure(1)
subplot(3,1,1)
plot(t, q(:,1)*180/pi, 'b')
hold on
plot(t, q(:,2)*180/pi, 'r--')
hold on
plot(t, q(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\theta$ (deg)', 'Interpreter', 'latex')
legend('$\theta_1$','$\theta_2$','$\theta_3$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')subplot(3,1,2)
plot(t, qd(:,1)*180/pi, 'b')
hold on
plot(t, qd(:,2)*180/pi, 'r--')
hold on
plot(t, qd(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\dot{\theta}$ (deg)', 'Interpreter', 'latex')
legend('$\dot{\theta_1}$','$\dot{\theta_2}$','$\dot{\theta_3}$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')subplot(3,1,3)
plot(t, qdd(:,1)*180/pi, 'b')
hold on
plot(t, qdd(:,2)*180/pi, 'r--')
hold on
plot(t, qdd(:,3)*180/pi, 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\ddot{\theta}$ (deg)', 'Interpreter', 'latex')
legend('$\ddot{\theta_1}$','$\ddot{\theta_2}$','$\ddot{\theta_3}$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')set(gcf, 'color',[1 1 1]);% 运动示意
figure(2)
three_link.plot(q,'trail','b');% 逆动力学
grav = [0; -9.8; 0];
tau = three_link.rne(q, qd, qdd, grav);% 关节驱动力矩
figure(3)
plot(t,tau(:,1), 'b')
hold on
plot(t, tau(:,2), 'r--')
hold on
plot(t, tau(:,3), 'm')
xlabel('time (s)', 'Interpreter', 'latex')
ylabel('$\tau$ (N/m)', 'Interpreter', 'latex')
legend('$\tau_1$','$\tau_2$','$\tau_3$', 'Interpreter', 'latex')
set(gca, 'FontName','Times New Roman')
set(gcf, 'color',[1 1 1]);

运行结果:
在这里插入图片描述
在这里插入图片描述

四、结语

  机器人工具箱还有其他的一些应用,譬如正动力学分析、视觉相关应用等,不过笔者对这些没有接触过,就不误导大家了。
  我是木头人,以上全是个人见解,有问题请大家评论区指出,大家共同进步!!

http://www.lryc.cn/news/349696.html

相关文章:

  • 华为OD机试 - CPU算力分配(Java 2024 C卷 100分)
  • web前端框架设计第八课-表单控件绑定
  • 这三个网站我愿称之为制作答辩PPT的神
  • flutter开发实战-实现多渠道打包及友盟统计(亲测有效)
  • JavaScript-JSON对象
  • 【C语言】自定义类型之---结构体超详解(结构体的定义使用、指针结构体,内存对齐,......代码详解)
  • 【完美恢复】修复计算机中丢失emp.dll的多个详细方法
  • 暗黑4可以搬砖吗?暗黑4怎么搬砖 搬砖攻略
  • WLAN技术
  • 维修AB罗克韦尔工控机 PanelView 900 2711-T9C8 SER C 触摸屏人机界面
  • 334_C++_std::bind中使用shared_from_this()
  • 【Python】防御性编程入门
  • 无线麦克风哪个品牌音质最好?热门无线麦克风品牌推荐
  • 粒子奇观:用Processing创造宇宙级的动态效果
  • Filesystem Fragmentation on Modern Storage Systems——论文泛读
  • 如何同步管理1000个设备的VLAN数据?
  • 【谷粒商城】01-环境准备
  • 2024深圳杯数学建模C题参考论文24页+完整代码数据解题
  • 用go语言写一个代码,加班就自动给老婆发信息,下班自动提醒的代码
  • Spring-Cloud 微服务
  • python数据分析——数据可视化(图形绘制基础)
  • 必背!!2024年软考中级——网络工程师考前冲刺几页纸
  • html+js光标操作
  • Cannot read properties of undefined (reading ‘init‘)报错
  • golang html/template模板中使用自定义函数/方法的2种方法总结
  • 浅析vue3自定义指令
  • 后仿真中的关于延时问题(延迟类型选择和脉冲控制)
  • 欧拉公式e^(ix)=(cos x+isin x)
  • Android 获取已安装应用、包名、应用名、版本号、版本名
  • 2024数学建模深圳杯B题成品论文43页word+完整可视化结果图+可执行代码