当前位置: 首页 > news >正文

salmon使用体验

文章目录

  • salmon转录本定量
    • brief
    • 模式一:fastq作为输入文件
      • 需要特别注意得地方
    • 模式二: bam文件作为输入

salmon转录本定量

brief

第一点是,通常说的转录组分析其中有一项是转录本定量,这是一个很trick的说话,说成定量/quantify要适合一些。
因为我们可以根据 reads summary的方式分为两种定量,一种是 transcript-level quantify,一种是 gene-level quantify。

第二点 transcript-level quantify根据比对方式又可以细分:

Transcript quantification 大致分为两类:

  • Alignment-based transcript quantification
    这里的比对也要作出区分,一种是和基因组比对(aligns reads to the reference genome),一种是和转录组比对(aligns reads to the reference transcriptome)。
    和基因组比对后,可以利用Cufflinks or StringTie 等tools,不仅可以测算已知转录本丰度还可以发现新的转录本
    和转录组比对后,可以利用RSEM or eXpress or Salmon-Aln 等tools进行转录本丰度的测算
  • Alignment-free transcript quantification
    就是直接 assign reads directly to transcripts,比如ailfish, Salmon-SMEM,quasi-mapping, and kallisto 这些工具可以实现。

conda activate NGS
conda config --add channels biocondaconda search salmon
conda install salmonsalmon --help

salmon v0.14.1

Usage: salmon -h|–help or
salmon -v|–version or
salmon -c|–cite or
salmon [–no-version-check] [-h | options]

Commands:
index Create a salmon index
quant Quantify a sample
alevin single cell analysis
swim Perform super-secret operation
quantmerge Merge multiple quantifications into a single file

模式一:fastq作为输入文件

# step 1
# make salmon map index
# The index is a structure that salmon uses to quasi-map RNA-seq reads during quantification.
wget https://ftp.ensembl.org/pub/release-111/fasta/macaca_mulatta/cdna/Macaca_mulatta.Mmul_10.cdna.all.fa.gz# 软件作者希望制作 decoy awere transcriptome,我没管,直接运行下下面的口令
salmon index -t ./Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.fa.gz  -i ./Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.salmon.indexls Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.salmon.index/
# duplicate_clusters.tsv  hash.bin  header.json  indexing.log  quasi_index.log  refInfo.json  rsd.bin  sa.bin  txpInfo.bin  versionInfo.json
# make index done # step 2
# rawdata QC
datadir="/public/Project_datasets/HY0007/Macaca_fascicularis_RNA-seq/PM-XS05KF2023080038-05四川大学6个食蟹猴普通真核有参转录组建库测序分析任务单/ANNO_XS05KF2023080038_PM-XS05KF2023080038-05_2023-11-02_16-01-18_22C2TNLT3/Rawdata"
mkdir 20240426-NGS-6samples
cd 20240426-NGS-6samples/mkdir qc
ls ${datadir}/ |while read id ;do echo ${datadir}/${id}/${id}_R1.fq.gz;done > qc.txt
ls ${datadir}/ |while read id ;do echo ${datadir}/${id}/${id}_R2.fq.gz;done >> qc.txtcat qc.txt |while read id ;do (fastqc -o ./qc $id &);done
multiqc ./qc -o ./multiqc# trim-adaptor
###
cat qc.txt |grep "R1" >1.txt
cat qc.txt |grep "R2" >2.txt
paste 1.txt 2.txt  > trim.txt
cat trim.txt |while read id;do a=($id) && echo /public/home/djs/software/TrimGalore-master/trim_galore -q 25 --phred33 --stringency 3 -o ./Clean_data --paired ${a[0]} ${a[1]}; done > parafly.txt# conda install -c bioconda parafly
nohup ParaFly -c parafly.txt -CPU 15 >>out.log 2>>err.log &###
cd Clean_data
mkdir {Fastqc,Multiqc}ls |grep "val.*fq" |while read id ;do (fastqc -o ./Fastqc ./$id &);done
multiqc ./Fastqc -o ./Multiqc# step3 map to reference
index="/public/home/djs/reference/macaca_fascicularis/Macaca_fascicularis.Macaca_fascicularis_6.0.cdna.all.salmon.index/"
# 双端测序
cd /public/home/djs/huiyu/project/HY0007/20240426-NGS-6samples/Clean_datals *val*gz|cut -d"_" -f 1|sort -u |while read id;do
echo salmon quant -i $index -l ISF --gcBias \-1 ${id}_R1_val_1.fq.gz -2 ${id}_R2_val_2.fq.gz -p 2 \-o ../salmon_output/${id}_output 
done > paired_salmon.shnohup ParaFly -c paired_salmon.sh -CPU 12 >>out.log 2>>err.log &# quantify result
ls
# aux_info  cmd_info.json  lib_format_counts.json  libParams  logs  quant.sf
head quant.sf
# ENSMFAT00000064841.2    354     110.000 37.761624       31.000
# ENSMFAT00000064566.2    372     126.000 107.406974      101.000
# ENSMFAT00000061855.2    336     96.000  108.422787      77.680
# ENSMFAT00000061921.2    336     96.000  67.838005       48.603
# ENSMFAT00000061935.2    336     96.000  185.240776      132.717
# ENSMFAT00000097936.1    252     45.460  20.632500       7.000
# ENSMFAT00000064576.2    348     107.929 130.356210      105.000
# ENSMFAT00000064726.2    339     98.000  60.160059       44.000
# ENSMFAT00000064735.2    267     52.000  10.307143       4.000## 进入R工作
# 进入R做一下 FPKM得转换countToTpm <- function(counts, effLen)
countToTpm <-  function(counts, effLen){rate <- log(counts) - log(effLen)denom <- log(sum(exp(rate)))exp(rate - denom + log(1e6))
}countToFpkm <- function(counts, effLen){N <- sum(counts)exp( log(counts) + log(1e9) - log(effLen) - log(N) )
}fpkmToTpm <- function(fpkm){exp(log(fpkm) - log(sum(fpkm)) + log(1e6))
}df <- read.table("quant.sf",header=T)
# 过滤低表达基因
df <- df[df$NumReads >=10,]
# normalization
df$fpkm <- countToFpkm(df$NumReads,df$EffectiveLength)
df$tpm <- countToTpm(df$NumReads,df$EffectiveLength)
write.csv(df,file="quant_filter_transform.csv",row.names=F)files <- list.files()
dlist <- lapply(files,function(file){read.table(paste("./",file,"/quant_filter_transform.csv",sep=""),header=T,sep=",")})

需要特别注意得地方

  • 参数 —libType A 的设置,一般情况是 --libType ISF 或者 --libType A 让软件自己推测。
    在这里插入图片描述

模式二: bam文件作为输入

这个bam文件是fastq文件与参考转录组比对的结果,注意不是与参考基因组的比对结果。
然后 transcripts.fa 是参考转录组文件(这种模式下,可以不用建议参考转录组的index)。

> ./bin/salmon quant -t transcripts.fa -l <LIBTYPE> -a aln.bam -o salmon_quant
# quantify result
ls
# aux_info  cmd_info.json  lib_format_counts.json  libParams  logs  quant.sf
head quant.sf
# ENSMFAT00000064841.2    354     110.000 37.761624       31.000
# ENSMFAT00000064566.2    372     126.000 107.406974      101.000
# ENSMFAT00000061855.2    336     96.000  108.422787      77.680
# ENSMFAT00000061921.2    336     96.000  67.838005       48.603
# ENSMFAT00000061935.2    336     96.000  185.240776      132.717
# ENSMFAT00000097936.1    252     45.460  20.632500       7.000
# ENSMFAT00000064576.2    348     107.929 130.356210      105.000
# ENSMFAT00000064726.2    339     98.000  60.160059       44.000
# ENSMFAT00000064735.2    267     52.000  10.307143       4.000
http://www.lryc.cn/news/344916.html

相关文章:

  • Ubuntu 20.04 安装 Ansible
  • TypeScript学习笔记:强类型JavaScript的优雅之旅
  • 监控异地组网怎么组网?
  • 将本地托管模型与 Elastic AI Assistant 结合使用的好处
  • Linux的内核态和用户态
  • springboot利用Redis的Geo数据类型,获取附近店铺的坐标位置和距离列表
  • Vitis HLS 学习笔记--理解串流Stream(2)
  • Golang | Leetcode Golang题解之第80题删除有序数组中的重复项II
  • uniapp自定义websocket类实现socket通信、心跳检测、连接检测、重连机制
  • Hive UDTF之explode函数、Lateral View侧视图
  • 智慧公厕打造智慧城市新标杆
  • 字节发布文生图模型PuLID:高效身份ID特征定制,单张图像克隆AI虚拟分身
  • SpringBoot启动流程分析之创建SpringApplication对象(一)
  • SSH简介 特点以及作用
  • MQTT服务搭建及python使用示例
  • Ubuntu如何设置中文输入法
  • PostgreSQL的pg_dump和 pg_dumpall 异同点
  • 【Ping】Windows 网络延迟测试 ping 、telnet、tcping 工具
  • DuDuTalk:4G桌面拾音设备在银行网点服务场景的应用价值
  • QT 设置窗口不透明度
  • 如何在Python中实现文本相似度比较?
  • 韩顺平0基础学Java——第7天
  • 性能远超GPT-4!谷歌发布Med-Gemini医疗模型;李飞飞首次创业瞄准空间智能;疫苗巨头联合OpenAl助力AI医疗...
  • 中国科技大航海时代,“掘金”一带一路
  • ffmpeg7.0 flv支持hdr
  • 【教程】极简Python接入免费语音识别API
  • 详解typora配置亚马逊云科技Amazon S3图床
  • Python sqlite3库 实现 数据库基础及应用 输入地点,可输出该地点的爱国主义教育基地名称和批次的查询结果。
  • iOS-SSL固定证书
  • docker 开启 tcp 端口