当前位置: 首页 > news >正文

【C++】BloomFilter——布隆过滤器

文章目录

    • 一、布隆过滤器概念
    • 二、布隆过滤器应用
    • 三、布隆过滤器实现
      • 1.插入
      • 2.查找
      • 3.删除
    • 四、布隆过滤器优缺
    • 五、结语

一、布隆过滤器概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间 .

位图的优点是节省空间,快,缺点是要求范围相对集中,如果范围分散,空间消耗上升,同时只能针对整型,字符串通过哈希转化成整型,再去映射,对于整型没有冲突,因为整型是有限的,映射唯一的位置,但是对于字符串来说,是无限的,会发生冲突,会发生误判:此时的情况的是不在是正确的,在是不正确的,因为可能不来是不在的,但是位置跟别人发生冲突,发生误判

此时布隆过滤器就登场了,可以降低误判率:让一个值映射多个位置,但是并不是消除误判

image-20230305083837457

可能还是会出现误判:

image-20230305141959705

💘虽然布隆过滤器还是会出现误判,因为这个数据的比特位被其他数据所占,但是判断一个数据不存在是准确,不存在就是0!


布隆过滤器改进:映射多个位置,降低误判率(位置越多,消耗也越多)

如果布隆过滤器长度比较小,比特位很快会被占为1,误判率自然会上升,所以布隆过滤器的长度会影响误判率,理论上来说,如果一个值映射的位置越多,则误判的概率越小,但是并不是位置越多越好,空间也会消耗:大佬们自然也能够想得到,所以有公式:

image-20230305144245126

我们可以来估算一下,假设用 3 个哈希函数,即K=3,ln2 的值我们取 0.7,那么 m 和 n 的关系大概是 m = n×k/ln2=4.2n ,也就是过滤器长度应该是插入元素个数的 4 -5倍


二、布隆过滤器应用

不需要一定准确的场景。比如游戏注册时候的昵称的判重:如果不在那就是不在,没被使用,在的话可能会被误判。

提高查找效率:客户端中查找一个用户的ID与服务器中的是否相同,在增加一层布隆过滤器提高查找效率:

image-20230305090447880


三、布隆过滤器实现

布隆过滤器的插入元素可能是字符串,也可能是其他类型,只要提供对应的哈希函数将该类型的数据转换成整型就可以了。

一般情况下布隆过滤器都是用来处理字符串的,所以布隆过滤器可以实现为一个模板类,将模板参数 T 的缺省类型设置为 string:

template <size_t N,size_t X = 5,class K=string,class HashFunc1 = BKDRHash,class HashFunc2 = APHash,class HashFunc3 = DJBHash>
class BloomFilter{public:private:bitset<N * X> _bs;};

这里布隆过滤器提供三个哈希函数,由于布隆过滤器一般处理的是字符串类型的数据,所以我们默认提供几个将字符串转换成整型的哈希函数:选取综合评分最高的 BKDRHash、APHash 和 DJBHash这三种哈希算法:

   struct BKDRHash{size_t operator()(const string& key){size_t hash = 0;for (auto ch : key){hash *= 131;hash += ch;}return hash;}};struct APHash{size_t operator()(const string& key){size_t hash = 0;int i = 0;for (auto ch : key){if ((i & 1) == 0){hash ^= ((hash << 7) ^ (ch) ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ (ch) ^ (hash >> 5)));}++i;}return hash;}};struct DJBHash{size_t operator()(const string& key){size_t hash = 5318;for (auto ch : key){hash += (hash << 5) + ch;}return hash;}};

1.插入

布隆过滤器复用bitset的 set 接口用于插入元素,插入元素时,我们通过上面的三个哈希函数分别计算出该元素对应的三个比特位,然后在位图中设置为1即可:

        void set(const K& key){size_t hash1 = HashFunc1()(key) % (N * X);size_t hash2 = HashFunc2()(key) % (N * X);size_t hash3 = HashFunc3()(key) % (N * X);_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);_bs.set(hash4);}

2.查找

通过三个哈希函数分别算出对应元素的三个哈希地址,得到对应的比特位,然后去判断这三个比特位是否都被设置成了1

如果出现一个比特位未被设置成1说明该元素一定不存在,也就是如果一个比特位为0就是false;而如果三个比特位全部都被设置,则return true表示该元素已经存在(注:可能会出现误判)

        bool test(const K& key){size_t hash1 = HashFunc1()(key) % (N * X);if (!_bs.test(hash1)){return false;}size_t hash2 = HashFunc2()(key) % (N * X);if (!_bs.test(hash2)){return false;}size_t hash3 = HashFunc3()(key) % (N * X);if (!_bs.test(hash3)){return false;}return true;}

3.删除

布隆过滤器一般没有删除,因为布隆过滤器判断一个元素是会存在误判,此时无法保证要删除的元素在布隆过滤器中,如果此时将位图中对应的比特位清0,就会影响到其他元素了:

image-20230305154012266

这时候我们只需要在每个比特位加一个计数器,当存在插入操作时,在计数器里面进行 ++,删除后对该位置进行 -- 即可

image-20230305154850724但是布隆过滤器的本来目的就是为了提高效率和节省空间,在每个比特位增加额外的计数器,空间消耗那就更多了


四、布隆过滤器优缺

\1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关

\2. 哈希函数相互之间没有关系,方便硬件并行运算

\3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势

\4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势

\5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能

\6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

\1. 有误判率,不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)

\2. 不能获取元素本身

\3. 一般情况下不能从布隆过滤器中删除元素

五、结语

给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法

近似算法:利用布隆过滤器,交集的就一定会进去,但是可能会存在误判:不同的也会进去,这是近似

精准算法:query一般是查询指令,比如可能是网络请求,或者是一个数据库sql语句

100亿个query,假设平均每个query是50byte,则100亿个query那就是合计500GB

相同的query,是一定进入相同编号的小文件,再对这些文件放进内存的两个set中,编号相同的Ai和Bi小文件找交集即可

image-20230305180756421

本篇结束…

http://www.lryc.cn/news/32655.html

相关文章:

  • 【Spring】资源操作管理:Resource、ResourceLoader、ResourceLoaderAware;
  • 【System Verilog基础】automatic自动存储--用堆栈区存储局部变量
  • 看板组件:Bryntum Task Board JS 5.3.0 Crack
  • 45 个 Git 经典操作场景,专治不会合代码
  • MyBatis之动态SQL
  • SpringBoot(Tedu)—DAY01——环境搭建
  • 代理模式-大话设计模式
  • STM32定时器的编码器接口模式
  • Java方法的使用
  • Linux命令·nl
  • 排序模型:DIN、DINE、DSIN
  • 【C++】Clang-Format:代码自动格式化(看这一篇就够了)
  • Linux命令·more
  • 为什么 SaaS 公司依靠知识库来做对客户服务?
  • 后端必备之VUE基础【黑马程序员】
  • 现代HYUNDAI EDI需求分析
  • 数据库基本功之SQL的基本函数
  • 配置主机名与ip的映射关系
  • Spring Cache简单介绍和使用
  • ECCV 2022|面向精确的主动相机定位算法
  • web实现环形旋转、圆形、弧形、querySelectorAll、querySelector、clientWidth、sin、cos、PI
  • PyCharm+Python+Selenium自动化测试动态验证码识别
  • git版本回退简单记录
  • QT入门Display Widgets之QLine、QLcdNumber、QTextBrowser
  • Spring学习笔记
  • 数据的标准化处理
  • 性能优化|记一次线上OOM问题处理
  • Vue动态粒子特效插件(背景线条吸附动画)
  • 【Java 类】002-类、属性、方法、代码块
  • Ubuntu Linux 编译安装的基本步骤