当前位置: 首页 > news >正文

多特征变量序列预测(11) 基于Pytorch的TCN-GRU预测模型

 往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

风速预测(七)VMD-CNN-BiLSTM预测模型-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM+ ARIMA)-CSDN博客

 CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四)Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型-CSDN博客

多特征变量序列预测(九)基于麻雀优化算法的CEEMDAN-SSA-BiGRU-Attention预测模型-CSDN博客

多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

VMD + CEEMDAN 二次分解,CNN-LSTM预测模型-CSDN博客

VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

多特征变量序列预测 -TCN 预测模型-CSDN博客

前言

本文基于前期介绍的风速数据(文末附数据集),介绍一种基于TCN-GRU网络模型的多特征变量序列预测模型。TCN-GRU模型是一种结合了 Temporal Convolutional Network (TCN) 和 Gated Recurrent Unit (GRU) 的深度学习模型,用于时间序列预测任务。该模型结合了卷积神经网络的并行化计算和循环神经网络的记忆性能,能够有效地捕捉时间序列数据中的长期依赖关系,以提高时间序列数据的预测性能。

模型整体结构:数据集一共有天气、温度、湿度、气压、风速等九个变量,通过滑动窗口制作数据集,利用多变量来预测风速。通过TCN-GRU预测模型进提取特征后,再送入全连接层,实现高精度的预测模型。

1. TCN(Temporal Convolutional Network)是一种基于卷积神经网络的时间序列模型。它使用一维卷积层来捕捉时间序列数据中的局部和全局特征。通过多个卷积层和非线性激活函数的堆叠,TCN 可以有效地扩展感受野,捕捉不同时间尺度的信息。

2. GRU(Gated Recurrent Unit)是一种循环神经网络单元,用于处理序列数据。GRU 使用门控机制(门控单元)来控制信息的流动和记忆的更新。通过遗忘门、更新门和重置门,GRU 可以有效地捕捉序列数据中的长期依赖关系,并避免梯度消失或梯度爆炸的问题。

3. TCN-GRU 预测模型将 TCN 和 GRU 结合在一起。首先,通过 TCN 层对时间序列数据进行特征提取和表示学习。然后,将 TCN 的输出作为 GRU 的输入,利用 GRU 的记忆性能进行进一步的序列建模和预测,能够高效的并行计算、有着较低的内存消耗、能够处理长期依赖关系和一定的灵活性。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_风速预测(一)数据集介绍和预处理-CSDN博客

1 多特征变量数据集制作与预处理

1.1 导入数据

1.2 数据集制作与预处理

先划分数据集,按照9:1划分训练集和测试集,制作数据集

2 基于Pytorch的TCN-GRU 预测模型

2.1 定义TCN预测模型

注意:输入风速数据形状为 [32, 7, 8], batch_size=32,7代表序列长度(滑动窗口取值),  维度8维代表挑选的8个变量的维度。

2.2 设置参数,训练模型

50个epoch,MSE 为0.01438,多变量特征TCN-GRU预测效果良好,性能优越,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以适当增加TCN层数和隐藏层的维度,微调学习率;

  • 调整GRU层数和每层神经元个数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3 模型评估与可视化

3.1 结果可视化

3.2 模型评估

代码、数据如下:

http://www.lryc.cn/news/321407.html

相关文章:

  • Lvs+keepalived+nginx搭建高可用负载均衡集群
  • WPF —— 控件模版和数据模版
  • 如何动态修改spring中定时任务的调度策略(1)
  • idea import的maven类报红
  • React——class组件中setState修改state
  • 搭建基于 Snowflake 的 CI/CD 最佳实践!
  • 数据结构(五)——树的基本概念
  • 2.28CACHE,虚拟存储器
  • 深入理解栈和队列(一):栈
  • electron-builder 打包问题,下载慢解决方案
  • (简单成功)Mac:命令设置别名
  • Grok-1:参数量最大的开源大语言模型
  • Python 自然语言处理库之stanza使用详解
  • 计算机网络:数据交换方式
  • 万用表革新升级,WT588F02BP-14S语音芯片助力智能测量新体验v
  • Day61:WEB攻防-PHP反序列化原生类TIPSCVE绕过漏洞属性类型特征
  • 【开源】SpringBoot框架开发不良邮件过滤系统
  • 详细教---用Django封装写好的模型
  • 设计模式 抽象工厂
  • OPTIONS请求(跨域预检查)
  • 游戏反云手机检测方案
  • HarmonyOS NEXT应用开发之动态路由
  • wayland(xdg_wm_base) + egl + opengles 使用 Assimp 加载带光照信息的材质文件Mtl 实现光照贴图的最简实例(十七)
  • 【NLP笔记】Transformer
  • 【Unity】程序创建Mesh(二)MeshRenderer、光照、Probes探针、UV信息、法线信息
  • 每日一练:LeeCode-167. 两数之和 II - 输入有序数组【双指针】
  • 性能优化(CPU优化技术)-NEON指令详解
  • 服务器硬件基础知识和云服务器的选购技巧
  • 深度学习PyTorch 之 transformer-中文多分类
  • STC 51单片机烧录程序遇到一直检测单片机的问题