当前位置: 首页 > news >正文

深度学习PyTorch 之 transformer-中文多分类

transformer的原理部分在前面基本已经介绍完了,接下来就是代码部分,因为transformer可以做的任务有很多,文本的分类、时序预测、NER、文本生成、翻译等,其相关代码也会有些不同,所以会分别进行介绍

但是对于不同的任务其流程是一样的,所以一些重复的步骤就不过多解释了。

1、 前期准备

数据和之前LSTM是一样的,同时我们还使用上次训练好的词嵌入模型

以下是代码

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
from gensim.models import KeyedVectors
from sklearn.model_selection import train_test_split
import pandas as pd
import jieba
import re
from sklearn.preprocessing import LabelEncoder# 加载数据
file_path = './data/news.csv'
data = pd.read_csv(file_path)# 显示数据的前几行
data.head()# 文本清洗和分词函数
def clean_and_cut(text):# 删除特殊字符和数字text = re.sub(r'[^a-zA-Z\u4e00-\u9fff]', '', text)# 使用jieba进行分词words = jieba.cut(text)return ' '.join(words)X_train_cut = data["text"].apply(clean_and_cut)
# 显示处理后的文本
data.head()# 将标签转换为数值形式
label_encoder = LabelEncoder()
data["label"] = label_encoder.fit_transform(data["label"])
# 加载保存的word vectors
loaded_wv = KeyedVectors.load('word_vector', mmap='r') class Word2VecDataset(Dataset):def __init__(self, texts, labels, word2vec, max_len=100):self.texts = textsself.labels = labelsself.word2vec = word2vecself.max_len = max_lendef __len__(self):return len(self.texts)def __getitem__(self, idx):text = self.texts[idx]label = self.labels[idx]embeds = [self.word2vec[word] if word in self.word2vec else np.zeros(self.word2vec.vector_size) for word in text]if len(embeds) > self.max_len:embeds = embeds[:self.max_len]else:embeds += [np.zeros(self.word2vec.vector_size) for _ in range(self.max_len - len(embeds))]return torch.tensor(embeds, dtype=torch.float), torch.tensor(label, dtype=torch.long)# texts和labels是数据集中的文本和标签列表
texts = X_train_cut.tolist()
labels = data['label'].tolist()# 划分数据集
train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2)

2、位置编码和主模型

import mathclass PositionalEncoding(nn.Module):def __init__(self, d_model, max_len=100):super(PositionalEncoding, self).__init__()# 创建一个位置编码矩阵pe = torch.zeros(max_len, d_model)position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)pe = pe.unsqueeze(0)  # (1, max_len, d_model)self.register_buffer('pe', pe)def forward(self, x):# x: (batch_size, max_len, d_model)x = x + self.pe.expand(x.size(0), -1, -1)return x

2.1 PositionalEncoding 类

这个类用于创建和提供位置编码。位置编码是 Transformer 模型中用于注入序列中单词的位置信息的机制。这种位置信息对于模型理解单词的顺序很重要。

初始化方法 __init__
  • d_model:模型的维度,也是词嵌入的维度。
  • max_len:序列的最大长度。
  • pe:位置编码矩阵,大小为 (1, max_len, d_model)。这个矩阵被注册为一个缓冲区,这意味着它会被保存和加载与模型的其他参数一起。
前向传播方法 forward
  • 输入 x 的形状是 (batch_size, max_len, d_model)
  • self.pe.expand(x.size(0), -1, -1):这个操作将位置编码矩阵扩展为 (batch_size, max_len, d_model),以便它可以与输入数据相加。
  • 最后,将扩展后的位置编码矩阵加到输入数据上,并返回结果。
#修改Transformer模型以添加位置编码
class TransformerClassifierWithPE(nn.Module):def __init__(self, num_classes, d_model=100, nhead=2, num_layers=2, dim_feedforward=2048, dropout=0.1):super(TransformerClassifierWithPE, self).__init__()# 位置编码self.pos_encoder = PositionalEncoding(d_model)# Transformer编码器层encoder_layers = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)# 分类器self.classifier = nn.Linear(d_model, num_classes)def forward(self, x):# x: (batch_size, max_len, d_model)x = self.pos_encoder(x)x = x.permute(1, 0, 2)  # (max_len, batch_size, d_model)x = self.transformer_encoder(x)  # (max_len, batch_size, d_model)x = x.mean(dim=0)  # (batch_size, d_model)x = self.classifier(x)  # (batch_size, num_classes)return x

2.2 TransformerClassifierWithPE 类

这个类定义了一个带有位置编码的 Transformer 分类器模型。

初始化方法 __init__
  • num_classes:分类任务的类别数量。
  • d_model:模型的维度,也是词嵌入的维度。
  • nhead:多头注意力的头数。
  • num_layers:Transformer 编码器层的数量。
  • dim_feedforward:前馈网络中的隐藏层维度。
  • dropout:Dropout 的概率。
  • pos_encoder:PositionalEncoding 实例,用于位置编码。
  • transformer_encoder:Transformer 编码器,由多个 TransformerEncoderLayer 组成。
  • classifier:线性分类器,用于生成最终的分类结果。
前向传播方法 forward
  • 输入 x 的形状是 (batch_size, max_len, d_model)
  • 首先,使用 self.pos_encoder(x) 获取位置编码后的输入。
  • 然后,将输入的维度从 (batch_size, max_len, d_model) 转换为 (max_len, batch_size, d_model),这是因为 PyTorch 的 Transformer 编码器期望的输入维度是这样的。
  • 接下来,通过 self.transformer_encoder(x) 应用 Transformer 编码器。
  • 然后,使用 x.mean(dim=0) 获取每个序列的平均表示。
  • 最后,通过 self.classifier(x) 应用线性分类器,得到最终的分类结果。
    这个模型可以用于文本分类任务,其中输入是文本序列的词嵌入表示。

3、训练模型


# 模型参数
d_model = 512
nhead = 8
num_encoder_layers = 3
dim_feedforward = 2048
num_classes = len(data.label.unique())  # 假设label_dict是我们的标签字典
max_len = 256model = TransformerClassifierWithPE( d_model=d_model, nhead=nhead, num_layers=num_encoder_layers, dim_feedforward=dim_feedforward, num_classes=num_classes, max_len=max_len,dropout=0.1)-----------------------------
TransformerModel((pos_encoder): PositionalEncoding()(transformer_encoder): TransformerEncoder((layers): ModuleList((0-2): 3 x TransformerEncoderLayer((self_attn): MultiheadAttention((out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True))(linear1): Linear(in_features=512, out_features=2048, bias=True)(dropout): Dropout(p=0.1, inplace=False)(linear2): Linear(in_features=2048, out_features=512, bias=True)(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)(dropout1): Dropout(p=0.1, inplace=False)(dropout2): Dropout(p=0.1, inplace=False))))(decoder): Linear(in_features=512, out_features=10, bias=True)
)
# 训练模型
num_epochs = 20
for epoch in range(num_epochs):for inputs, labels in train_loader:# 清除梯度optimizer.zero_grad()# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 反向传播loss.backward()# 更新参数optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
# 在测试集上评估模型
model.eval()
with torch.no_grad():correct = 0total = 0for inputs, labels in test_loader:outputs = model(inputs)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the model on the test set: {100 * correct / total}%')
http://www.lryc.cn/news/321378.html

相关文章:

  • STC 51单片机烧录程序遇到一直检测单片机的问题
  • 后端系统开发之——接口参数校验
  • IDEA 配置阿里规范检测
  • 数据仓库系列总结
  • gitlab runner没有内网的访问权限应该怎么解决
  • el-tree 设置默认展开指定层级
  • python便民超市管理系统flask-django-nodejs-php
  • HarmonyOS — BusinessError 不能被 JSON.stringify转换
  • JupyterNotebook 如何切换使用的虚拟环境kernel
  • 预防GPT-3和其他复杂语言模型中的“幻觉”
  • 从源码解析AQS
  • 基于Spring Boot的云上水果超市的设计与实现
  • 游戏引擎中的动画基础
  • springboot3快速入门案例2024最新版
  • 软考 系统架构设计师系列知识点之系统性能(1)
  • Trent-FPGA硬件设计课程
  • 【大模型学习记录】db-gpt源码安装问题汇总
  • QB PHP 多语言配置
  • Kubernetes实战(三十一)-使用开源CEPH作为后端StorageClass
  • 【Python爬虫】详解BeautifulSoup()及其方法
  • C语言经典算法-8
  • Panasonic松下PLC如何数据采集?如何实现快速接入IIOT云平台?
  • 高性能 MySQL 第四版(GPT 重译)(四)
  • 整型数组按个位值排序 - 华为OD统一考试(C卷)
  • 【React】Diff算法
  • 【物联网】Modbus 协议及应用
  • Docker容器引擎
  • 2.28线程
  • TCP/IP ⽹络模型
  • 云原生:重塑未来应用的基石