当前位置: 首页 > news >正文

★判断素数的几种方法(由易到难,由慢到快)

素数的定义:

        素数,又称为质数,指的是“大于1的整数中,只能被1和这个数本身整除的数”。换句话说,素数是只有两个正约数(1和本身)的自然数。素数在数论中有着重要的地位,且素数的个数是无限的。例如,2、3、5、7、11、13等都是素数。判断一个数是否为素数的方法有多种,包括试除法、埃筛法等。

暴力法:

素数判定,是检验一个给定的整数是否为素数的测试。
判断 n 是否为素数时,最简单的方式就是暴力法:遍历的所有大于 1 且小于 n 的整数,判断 n 是否可以被这些数整除,如果不存在可以整除的数,则为素数;否则为合数。

#include <bits/stdc++.h>
using namespace std;//暴力法bool isPrime(int n) {  if (n <= 1) return false;  for (int i = 2; i <= n-1; i++) {  if (n % i == 0) {  return false;  }  }  return true;  
} int main() {  int n;  cout << "Enter a number: ";  cin >> n;  if (isPrime(n))  std::cout << n << " is a prime number." << std::endl;  else  std::cout << n << " is not a prime number." << std::endl;  return 0;  
}

暴力法的优化:

        暴力法效率极低,如果n为一万,则核心代码要跑n-2次,其实我们只需要判断2~√n个数,因为一个数如果可以因数分解(不是质数),那么分解得到的两个数一定是一个小于等于√n,一个大于等于√n,一个合数一定由两个自然数相乘,一个大于等于平方根一个小于等于平方根,并且成对存在,所以只判断前根号个。这时我们需要使用sqrt函数来求根号。
代码如下:

#include <bits/stdc++.h>
using namespace std;//暴力法的优化 
bool isPrime(int n) {  if (n <= 1) return false;  for (int i = 2; i <= sqrt(n); i++) {  if (n % i == 0) {  return false;  }  }  return true;  
} int main() {  int n;  cout << "Enter a number: ";  cin >> n;  if (isPrime(n))  std::cout << n << " is a prime number." << std::endl;  else  std::cout << n << " is not a prime number." << std::endl;  return 0;  
}

埃式筛选:

        埃拉托斯特尼筛法(Sieve of Eratosthenes)是一种简单且古老的用来找出一定范围内所有素数的算法。其基本思想是从2开始,将每个素数的各个倍数,标记为合数(非素数),直到标记到所给定的范围为止。

具体的步骤如下
  1. 创建一个布尔数组 notPrime[0..n+1],并初始化为 true。这个数组用来表示对应索引的数是否为素数(true 表示可能是素数,false 表示不是素数或还未检测)。通常 notPrime[0] 和 notPrime[1] 会被设为 false,因为0和1不是素数。

  2. 从 p = 2 开始,即最小的素数,一直到 sqrt(n)(n为要筛的范围)。

  3. 如果 notPrime[p] 为 true,则 p 是一个素数。

  4. 接下来,标记 p 的所有倍数(从 p*p 开始,一直到 n)为非素数。即设置 notPrime[p*i] 为 false,其中 i 从 p 开始递增。

  5. 重复步骤3和4,直到 p 超出 sqrt(n)

  6. 最后,数组中剩余标记为 true 的索引对应的数就是素数。

#include <bits/stdc++.h>
using namespace std;//埃式筛法
bool sieveOfEratosthenes(int n,vector<bool>& notPrime) {  for (int p = 2; p * p <= n; p++) {  //将素数的倍数全部标记为false if (notPrime[p] == true) {  for (int i = p * p; i <= n; i += p)  notPrime[i] = false;  }  }  return notPrime[n];
}  
int main() {  int n;  cout << "Enter a number: ";  cin >> n; vector<bool> notPrime(n + 1, true);notPrime[0] = notPrime[1] = false;  if(sieveOfEratosthenes(n,notPrime)) cout << n << " is a prime number." << std::endl;  else  cout << n << " is not a prime number." << std::endl;return 0;  
}

欧拉筛选:

具体的步骤如下        

        埃式筛选任然有一些可以改进的地方,比如说当筛选到2时,会将4,、6、8、10、12等2的倍数标记为false。然而当筛选到3时,会将6、9、12、15等3的倍数标记为fasle,这其中6和12等既是2的倍数又是3的倍数的一些数,会被重复标记。

        欧拉筛选素数法是一种更加高效的素数筛选算法,它的基本思想是从2开始,将每个素数的倍数都标记成合数,但与传统的埃拉托斯特尼筛法(Sieve of Eratosthenes)不同,欧拉筛选保证了每个合数只被其最小质因子筛选一次,从而实现了线性的时间复杂度。

下面是欧拉筛选素数法的详细实现步骤:

  1. 初始化:创建一个布尔数组 isPrime[0..n],并全部初始化为 true。这个数组用于表示从0到n的每个数是否为素数。通常,我们会忽略0和1,因为它们不是素数。

  2. 筛选过程

    • 从 p = 2 开始,这是第一个素数。
    • 对于每个 p,遍历所有 i(从 p 的平方开始,直到 n),并将 isPrime[i*p] 设置为 false,因为 i*p 显然不是素数(除非 i 是1,但这在循环开始条件中已经被排除了)。
    • 在遍历 i 的过程中,如果发现 isPrime[i] 已经为 false,则跳出内层循环。这是因为如果 i 不是素数,那么 i*p 已经被一个比 p 更小的素数标记过了,无需再次标记。
    • 继续增加 p,直到所有小于等于 n 的数都被检查。
  3. 收集素数:最后,遍历 isPrime 数组,所有标记为 true 的位置对应的数就是素数。

        这个算法的关键在于,它确保了每个合数只被其最小的质因子筛选一次。这是通过在内层循环中检查 isPrime[i] 并在发现其为 false 时跳出循环来实现的。这样,每个合数只会在其最小质因子第一次出现时被标记,从而避免了重复标记,提高了效率。

        欧拉筛选素数法的时间复杂度是线性的,即 O(n),这使得它在处理大规模数据时比传统的埃拉托斯特尼筛法更加高效。

        需要注意的是,虽然欧拉筛选素数法在某些情况下比埃拉托斯特尼筛法更优,但它并不是在所有情况下都是最佳选择。具体使用哪种算法取决于问题的具体要求和数据的规模。

#include <bits/stdc++.h>
using namespace std;
vector<int> primes; 
void linearSieve(int n) {  vector<bool> isPrime(n + 1, true);  for (int i = 2; i <= n; ++i) {  if (isPrime[i]) {  primes.push_back(i);  }  for (size_t j = 0; j < primes.size() && i * primes[j] <= n; ++j) {  isPrime[i * primes[j]] = false;  if (i % primes[j] == 0) {  break;  }  }  }  }  int main() {  int n = 100; // 可以根据需要修改这个值  cout << "Prime numbers up to " << n << " are: ";  linearSieve(n);  for (int prime : primes) {  cout << prime << " ";  }  return 0;  
}

对于小范围的素数判断,试除法通常足够高效;对于需要生成大量素数的情况,埃筛法更为合适;

http://www.lryc.cn/news/312928.html

相关文章:

  • vue svelte solid 虚拟滚动性能对比
  • IDEA中新增文件,弹出框提示是否添加到Git点错了,怎么重新设置?
  • LV15 day5 字符设备驱动读写操作实现
  • Uninty 鼠标点击(摄像机发出射线-检测位置)
  • 描述下Vue自定义指令
  • 2024.3.7
  • this.$watch 侦听器 和 停止侦听器
  • P1030 [NOIP2001 普及组] 求先序排列题解
  • 【分布式】NCCL Split Tree kernel内实现情况 - 06
  • C语言深入学习 --- 4.自定义类型(结构体+枚举+联合)
  • AI自然语言中默认上下文长度4K 几K是什么意思?
  • vSphere 8考试认证题库 2024最新(VCP 8.0版本)
  • 系统学习Python——装饰器:“私有“和“公有“属性案例-[装饰器参数、状态保持和外层作用域]
  • 星辰天合参与编制 国内首个可兼顾 AI 大模型训练的高性能计算存储标准正式发布
  • 算法训练day38动态规划基础Leetcode509斐波纳切数70爬楼梯746使用最小花费爬楼梯
  • Leetcode 206. 反转链表
  • 电子科技大学课程《计算机网络系统》(持续更新)
  • HBase介绍、特点、应用场景、生态圈
  • 蓝桥杯错误记录
  • Spring-静态代理VS动态代理/实现代理ProxyFactory
  • 单片机精进之路-9ds18b20温度传感器
  • 支部管理系统微信小程序(管理端+用户端)flask+vue+mysql+微信小程序
  • 4、Linux-常用命令(二)
  • golang实现openssl自签名双向认证
  • 【学习】torchvision.datasets.ImageFolder()
  • pyinstaller打包的exe运行报错 No module named path
  • Vue3中Vuex状态管理库学习笔记
  • React富文本编辑器开发(二)
  • nginx代理minio客户端
  • 将ppt里的视频导出来