当前位置: 首页 > news >正文

推导部分和——带权并查集

在这里插入图片描述

题解:

带权并查集

引言: 带权并查集是一种进阶的并查集,通常,结点i的权值等于结点i到根节点的距离,对于带权并查集,有两种操作需要掌握——Merge与Find,涉及到路径压缩与维护权值等技巧。

带权并查集的数据结构

  • 使用顺序存储结构,定义结构体数组,其中a[i]的root代表节点 i 的根节点编号,weight代表它与root号节点之间的距离,也就是权值。

    struct node {int root;ll weight;node() :root(0), weight(0) {}
    }a[100005];
    

Find函数+权值合并

  • 首先,在执行整个并查集算法之前,需要首先初始化每一个结点的根节点编号为它本身,意思就是说,每一个结点在初始状态时都被视为一颗单独的并查集树,即:

    for (int i = 1; i <= n; i++) {a[i].root = i;
    }
    
  • 当我们想要去查询一个节点的根节点时,调用find函数:

    • 传入:想要查询的结点编号x

    • 返回: 第x号结点的根节点编号

      //路径压缩+权值合并
      int find(int x) {if (x != a[x].root) {//更新x的根节点int tmp = a[x].root;a[x].root = find(a[x].root);a[x].weight += a[tmp].weight;}return a[x].root;
      }
      
    • 在函数体内:

      • 当结点x的root值为它自己时,即 x == a[x].root 时,直接返回a[x].root
      • 否则,递归查找它根节点的根节点
      • 在递归之前,使用tmp暂存x当前的根节点编号。这是由于在查找的过程中,我们使用了路径压缩的技巧,使a[x].root被赋值为find函数的返回值,但是在后续的计算中,我们又需要使用到这个旧的a[x].root值。
      • 在路径压缩的同时,我们必须要维护权值a[x].weight使其始终等于x号结点到a[x].root号结点的距离
      • 在路径压缩之前,a[x].weight存储的是x到旧的root的距离,但root发生更改后,此时新的权值a[x].weight应该修改为dist(新root,旧root) + dist(旧root,x)才能符合权值的定义,dis(新root, 旧root)将会被递归计算出来,而dis(旧root, x)正是a[x].weight现在存储的值,因此,我们必须要记下旧root的编号才能找到旧root的位置,这也就是tmp发挥的作用。

合并

  • 当我们得到了两个结点之间的距离,并且想要将这两个结点合并,按照并查集的思想,应当先找到他们各自的根节点,然后再将两颗树合并。然而,我们现在所获取的信息并不是根节点的信息,因此我们需要对已知的信息做一个转化:
    • 假设我们现在得到的新的信息是第l-1个节点到第r个节点的距离为w,设第l-1个节点的根节点编号x第r个节点的根节点编号y

    • 首先,我们通过find(l−1)find(l - 1)find(l1)find(r)find(r)find(r)获得x与y的值,经过find函数内部的权值维护之后,此时,a[l-1].weight和a[r].weight已经分别被修改为l-1到x和r到y的距离了,设它们分别为w1和w2.在这里插入图片描述

    • 通过上图,其实我们很容易就能看出x到y的距离为:w+w2−w1w+w_2-w1w+w2w1

    • 在这,我们只需要算出x到y的距离就好了,在后续调用find函数执行路径压缩和权值合并时将会处理掉它,因此,我们合并的操作就是:

      int l, r, w;
      l = read(), r = read(), w = read();
      //x为l-1的根节点,y为r的根节点
      int x = find(l - 1), y = find(r);
      //若l-1与r的根节点不相同
      if (x != y) {//将结点x并入y的子树a[x].root = y;//根据向量的思想计算a[x].weight = w + a[r].weight - a[l - 1].weight;
      }
      

查询

写到这里,这个题目已经接近尾声。(此处再次强调a[i].weight的意义是从第i个节点到第a[i].root个节点的距离,接下来要用的) 当我们维护好了一颗带权并查集树之后,那我们查询区间和就只有两种情况:

  • 设区间左端点为l,右端点为r,则
    • 当l与r的根不相同时,则无法查询出l到r的区间和。
    • 当l与r的根相同时,则有s[l..r]=a[l−1].weight−a[r].weights[l.. r]=a[l-1].weight-a[r].weights[l..r]=a[l1].weighta[r].weight
    • 以图形的方式表达,蓝色部分即为所求的区间和:
      在这里插入图片描述

完整代码:

#include <iostream>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std;
ll n, m, q;//带权并查集结点
struct node {int root;ll weight;node() :root(0), weight(0) {}
}a[100005];
//快读
int read() {char ch = getchar(); int res = 0;while (ch < '0' || ch>'9') {ch = getchar();}while (!(ch < '0' || ch>'9')) {res = res * 10 + (ch - '0');ch = getchar();}return res;
}
//快写
void print(ll x) {if (x > 9) {print(x / 10);}putchar(x % 10 + '0');
}//路径压缩+权值合并
int find(int x) {if (x != a[x].root) {//更新x的根节点int tmp = a[x].root;a[x].root = find(a[x].root);a[x].weight += a[tmp].weight;}return a[x].root;
}int main()
{cin >> n >> m >> q;for (int i = 1; i <= n; i++) {a[i].root = i;}for (int i = 1; i <= m; i++) {int l, r, w;l = read(), r = read(), w = read();//x为l-1的根节点,y为r的根节点int x = find(l - 1), y = find(r);//若l-1与r的根节点不相同if (x != y) {//将结点x并入y的子树a[x].root = y;//根据向量的思想计算a[x].weight = w + a[r].weight - a[l - 1].weight;}}for (int i = 1; i <= q; i++) {int l, r; cin >> l >> r;if (find(l - 1) != find(r)) {puts("UNKNOWN");}else {print(a[l - 1].weight - a[r].weight);putchar('\n');}}return 0;
}
http://www.lryc.cn/news/30705.html

相关文章:

  • 费解的开关/翻硬币
  • OpenGL中的坐标系
  • Spring——Spring介绍和IOC相关概念
  • A+B Problem
  • 【ROS学习笔记11】ROS元功能包与launch文件的使用
  • 【python】
  • 充电协议: 快充协议,如何选充电宝?
  • 视觉SLAM十四讲ch6 非线性优化笔记
  • Nikto工具使用指南
  • Git(4)之基本工具
  • 好书推荐。
  • [Pytorch]DataSet和DataLoader逐句详解
  • 【Kettle-佛系总结】
  • JavaSE网络编程
  • 9万字“联、管、用”三位一体雪亮工程整体建设方案
  • springboot自动装配原理
  • Docker学习(二十)什么是分层存储?
  • Vue组件进阶(动态组件,组件缓存,组件插槽,具名插槽,作用域插槽)与自定义指令
  • 僵尸进程与孤儿进程
  • 基于注解@Transactional事务基本用法
  • Go项目(商品微服务-2)
  • 无头盔PICO-unity开发日记1(抓取、传送)
  • Material3设计指南笔记
  • JavaWeb--会话技术
  • Git图解-为啥是Git?怎么装?
  • HTML 框架
  • Rust特征(Trait)
  • 详解七大排序算法
  • Vue+ECharts实现可视化大屏
  • 百度Apollo规划算法——轨迹拼接