当前位置: 首页 > news >正文

【非递归版】归并排序算法(2)

目录

MergeSortNonR归并排序

非递归&归并排序VS快速排序 

整体思想

图解分析​

代码实现

时间复杂度

归并排序在硬盘上的应用(外排序)


MergeSortNonR归并排序

前面的快速排序的非递归实现,我们借助栈实现。这里我们能否也借助栈去实现归并排序呢?

非递归&归并排序VS快速排序 

  • 快速排序的递归:前序递归
  • 快速排序的非递归:借用栈
  • 快速排序的非递归模拟递归借助栈,实际上来说,快排的非递归模拟回归的过程,就是不入栈。(实际上是没有这个回归过程的)
  • 因为快速排序回归不需要处理,在分割的时候就已经处理了

  • 归并排序的递归:后序递归
  • 归并排序的非递归:直接分解
  • 归并排序回归需要处理,然儿借助栈模拟非递归,根本没有回归这个过程。

  • 处理根  左  右(前序)
  • 左  右 根处理(后序)
  • 借助栈模拟非递归,比较适合前序,后序需要复杂处理是不适合的。

整体思想

  • 借助斐波那契数列的非递归思想
  • 递归的分治是倒着推;非递归的分治是正着推(顺着往前推)
  • 把整个序列直接看成分解之后的(不在去分解了)。直接合并。
  • 一一合并,二二合并,四四合并等等........(❗万一这个不是2的次方数合并呢❓)
  • 每小组合并之后拷贝回原数组(❗不要在每大组合并完再去拷贝❗)
  • 因为是一一合并,二二合并等等。设置一个gap变量控制每大组的合并

每小组

  • 设置begin1&end1&begin2&end2控制两个区间的序列的合并
  • 两段有序序列的合并
  • 拷贝 | 每小组合并之后拷贝回原数组(❗不要在每大组合并完再去拷贝❗)
  • ❗区间必须变化起来

每大组

  • 写入循环for
  • 完成每gap组的合并拷贝
  • 循环使❗区间必须变化起来

整体

  • gap变化起来
  • 结束条件:< n

易错点

  • 每小组合并完之后再去拷贝
  • 区间合并的起始位置&结束位置&拷贝的长度问题
  • 合并的组数不一定都是2的次方倍,越界问题。(可以尝试打印区间来查看越界问题)
  • 越界问题存在三种情况(begin1=i<n不会越界)
  1. end1(后面两个肯定越界,第一序列存在数,第二序列不存在数)
  2. begin2(end2肯定越界,第二序列不存在数)
  3. end2(可能第二序列区间还存在数)

图解分析​​​​​​​​​​​​​​ 

 

代码实现

#include<stdio.h>
#include<stdlib.h>
#include<string.h>//0          n-1
void MergeSortNonR(int* a, int begin, int end, int* tmp)
{//直接看成分割完合并的int gap = 1;//整体while (gap < end + 1){//每组for (int i = 0; i < end + 1; i += 2 * gap){//每小组int begin1 = i;//不会越界int end1 = i + gap - 1;//会越界int begin2 = i + gap;int end2 = i + 2 * gap - 1;int j = i;//越界结束=n if (end1 >= end + 1 || begin2 >= end + 1){break;}//越界修改if (end2 >= end + 1)//=注意{end2 = end;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else//>={tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//begin1变了大哥memcpy(a + i, tmp + i, sizeof(int) * (end2-i+1));}printf("\n");gap = gap * 2;}
}int main()
{int a[] = { 10,6,7,1,3,9,4,2,9,8,7 };int n = sizeof(a) / sizeof(a[0]);int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}MergeSortNonR(a, 0, n - 1, tmp);PrintSort(a, n);free(tmp);return 0;
}

时间复杂度

时间复杂度:O(N*logN) 

归并排序在硬盘上的应用(外排序)

  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。(硬盘)
  • 归并排序既是内排序,也是外排序。

  • 内存和硬盘的区别?
  • 为什么归并排序可以是外排序,其他排序只能是内排序?
  • 为什么数据要放到硬盘里面?
  • 大量的数据在文件中保存,如果用归并排序使其有序?

🙂感谢大家的阅读,若有错误和不足,欢迎指正。关于归并排序作为外排序在文件中的应用,后面的补充内容会详细讲解。

http://www.lryc.cn/news/306765.html

相关文章:

  • [C++]C++实现本地TCP通讯的示例代码
  • Sora - 探索AI视频模型的无限可能
  • 【JavaScript 漫游】【022】事件模型
  • 【加密算法】RSA非对称加密算法简介
  • 深入理解 JavaScript 对象原型,解密原型链之谜(上)
  • 产品经理学习-产品运营《什么是SOP》
  • 大数据Hadoop生态圈
  • 算法简介:查找与算法运行时间
  • 零基础C++开发上位机--基于QT5.15的串口助手(三)
  • Facebook的虚拟社交愿景:元宇宙时代的新起点
  • 【深度学习笔记】4_6 模型的GPU计算
  • 留学申请过程中如何合理使用AI?大学招生官怎么看?
  • vue2与vue3的diff算法有什么区别
  • ES小总结
  • vue2与vue3中父子组件传参的区别
  • 使用vuetify实现全局v-alert消息通知
  • CentOS 7.9上编译wireshark 3.6
  • 初学学习408之数据结构--数据结构基本概念
  • Java项目中必须使用本地缓存的几种情况
  • 【鸿蒙 HarmonyOS 4.0】TypeScript开发语言
  • Android java基础_异常
  • 高数考研 -- 公式总结(更新中)
  • 详解顺序结构滑动窗口处理算法
  • Java 8中使用Stream来操作集合
  • MATLAB环境下一种改进的瞬时频率(IF)估计方法
  • 解决:selenium web browser 的版本适配问题
  • pytest.param作为pytest.mark.parametrize的参数进行调用
  • 如何判断一个元素是否在可视区域中?
  • Go Run - Go 语言中的简洁指令
  • Spring全面精简总结