当前位置: 首页 > news >正文

Matplotlib绘制炫酷柱状图的艺术与技巧【第60篇—python:Matplotlib绘制柱状图】

文章目录

  • Matplotlib绘制炫酷柱状图的艺术与技巧
      • 1. 簇状柱状图
      • 2. 堆积柱状图
      • 3. 横向柱状图
      • 4. 百分比柱状图
      • 5. 3D柱状图
      • 6. 堆积横向柱状图
      • 7. 多系列百分比柱状图
      • 8. 3D堆积柱状图
      • 9. 带有误差线的柱状图
      • 10. 分组百分比柱状图
      • 11. 水平堆积柱状图
      • 12. 多面板柱状图
      • 13. 自定义颜色和样式
      • 总结

Matplotlib绘制炫酷柱状图的艺术与技巧

当今数据可视化领域,Matplotlib是Python中最为流行的绘图库之一。它提供了丰富的功能和灵活的选项,使得用户能够创建各种类型的图表。本文将介绍Matplotlib库中绘制不同种类炫酷柱状图的技术,包括簇状柱状图、堆积柱状图、横向柱状图、百分比柱状图以及3D柱状图。

1. 簇状柱状图

簇状柱状图是将多个柱状图并列在同一组,方便比较不同类别之间的数据。下面是一个简单的代码示例:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [5, 7, 9]
values2 = [6, 8, 10]bar_width = 0.35
index = np.arange(len(categories))plt.bar(index, values1, bar_width, label='Group 1')
plt.bar(index + bar_width, values2, bar_width, label='Group 2')plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Clustered Bar Chart')
plt.xticks(index + bar_width / 2, categories)
plt.legend()
plt.show()

image-20240204235223077

2. 堆积柱状图

堆积柱状图用于展示总体和各组成部分之间的关系。以下是一个堆积柱状图的代码示例:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [5, 7, 9]
values2 = [3, 6, 8]plt.bar(categories, values1, label='Group 1')
plt.bar(categories, values2, bottom=values1, label='Group 2')plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Stacked Bar Chart')
plt.legend()
plt.show()

3. 横向柱状图

横向柱状图在一些情境下更适合,可以通过barh函数实现:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values = [5, 7, 9]plt.barh(categories, values)plt.xlabel('Values')
plt.ylabel('Categories')
plt.title('Horizontal Bar Chart')
plt.show()

4. 百分比柱状图

百分比柱状图可以通过将每个值除以总和来实现。以下是一个简单的例子:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values = [20, 30, 50]total = sum(values)
percentages = [(value / total) * 100 for value in values]plt.bar(categories, percentages)plt.xlabel('Categories')
plt.ylabel('Percentage')
plt.title('Percentage Bar Chart')
plt.show()

5. 3D柱状图

Matplotlib还支持绘制3D柱状图,可以通过bar3d函数实现:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values = [5, 7, 9]fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')xpos = np.arange(len(categories))
ypos = [1] * len(categories)ax.bar3d(xpos, ypos, np.zeros(len(categories)), 0.8, 0.8, values)ax.set_xlabel('Categories')
ax.set_ylabel('Y')
ax.set_zlabel('Values')
ax.set_title('3D Bar Chart')
plt.show()

以上是一些Matplotlib库中绘制不同种类炫酷柱状图的基本技术。通过灵活运用这些技术,你可以根据实际需求创建更加丰富多彩的柱状图表。

image-20240204235253825

6. 堆积横向柱状图

堆积横向柱状图同样可以通过barh函数实现,不过需要调整参数来实现堆积效果:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [5, 7, 9]
values2 = [3, 6, 8]plt.barh(categories, values1, label='Group 1')
plt.barh(categories, values2, left=values1, label='Group 2')plt.xlabel('Values')
plt.ylabel('Categories')
plt.title('Stacked Horizontal Bar Chart')
plt.legend()
plt.show()

7. 多系列百分比柱状图

当需要比较多个系列的百分比时,可以将每个系列的百分比进行堆积展示:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [20, 30, 50]
values2 = [10, 40, 50]total1 = sum(values1)
total2 = sum(values2)
percentages1 = [(value / total1) * 100 for value in values1]
percentages2 = [(value / total2) * 100 for value in values2]plt.bar(categories, percentages1, label='Group 1')
plt.bar(categories, percentages2, bottom=percentages1, label='Group 2')plt.xlabel('Categories')
plt.ylabel('Percentage')
plt.title('Stacked Percentage Bar Chart')
plt.legend()
plt.show()

8. 3D堆积柱状图

Matplotlib的3D绘图工具同样支持堆积效果,可以通过调整参数来实现:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [5, 7, 9]
values2 = [3, 6, 8]fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')xpos = np.arange(len(categories))
ypos = [1] * len(categories)ax.bar3d(xpos, ypos, np.zeros(len(categories)), 0.8, 0.8, values1, label='Group 1')
ax.bar3d(xpos, ypos, np.zeros(len(categories)), 0.8, 0.8, values2, bottom=values1, label='Group 2')ax.set_xlabel('Categories')
ax.set_ylabel('Y')
ax.set_zlabel('Values')
ax.set_title('3D Stacked Bar Chart')
ax.legend()
plt.show()

以上代码示例展示了如何使用Matplotlib库绘制不同种类炫酷柱状图。通过这些例子,你可以灵活运用Matplotlib的强大功能,根据实际需求绘制出多样化的柱状图表。希望这些例子能够帮助你更好地理解和使用Matplotlib库。

9. 带有误差线的柱状图

有时候,为了更全面地呈现数据,我们需要在柱状图上添加误差线。以下是一个带有误差线的简单示例:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values = [5, 7, 9]
errors = [0.5, 0.8, 0.2]plt.bar(categories, values, yerr=errors, capsize=5, label='Values with Error')plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Chart with Error Bars')
plt.legend()
plt.show()

image-20240204235319700

10. 分组百分比柱状图

有时候需要比较不同组的百分比,可以通过调整宽度和位置实现分组效果:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values_group1 = [20, 30, 50]
values_group2 = [15, 25, 60]total_group1 = sum(values_group1)
total_group2 = sum(values_group2)
percentages_group1 = [(value / total_group1) * 100 for value in values_group1]
percentages_group2 = [(value / total_group2) * 100 for value in values_group2]bar_width = 0.35
index = np.arange(len(categories))plt.bar(index, percentages_group1, bar_width, label='Group 1')
plt.bar(index + bar_width, percentages_group2, bar_width, label='Group 2')plt.xlabel('Categories')
plt.ylabel('Percentage')
plt.title('Grouped Percentage Bar Chart')
plt.xticks(index + bar_width / 2, categories)
plt.legend()
plt.show()

11. 水平堆积柱状图

水平堆积柱状图可以通过调整参数实现。以下是一个简单的水平堆积柱状图的代码示例:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [5, 7, 9]
values2 = [3, 6, 8]plt.barh(categories, values1, label='Group 1')
plt.barh(categories, values2, left=values1, label='Group 2')plt.xlabel('Values')
plt.ylabel('Categories')
plt.title('Horizontal Stacked Bar Chart')
plt.legend()
plt.show()

12. 多面板柱状图

如果你希望在同一图中展示多个柱状图,并对它们进行比较,可以使用多面板柱状图。以下是一个简单的例子:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values1 = [5, 7, 9]
values2 = [3, 6, 8]fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))ax1.bar(categories, values1, label='Group 1')
ax1.bar(categories, values2, bottom=values1, label='Group 2')
ax1.set_title('Grouped Bar Chart')ax2.barh(categories, values1, label='Group 1')
ax2.barh(categories, values2, left=values1, label='Group 2')
ax2.set_title('Grouped Horizontal Bar Chart')plt.legend()
plt.show()

13. 自定义颜色和样式

你可以通过传递颜色参数来自定义柱状图的颜色。此外,你还可以设置柱体的样式,例如边框宽度、边框颜色等。以下是一个简单的例子:

import matplotlib.pyplot as plt
import numpy as npcategories = ['Category A', 'Category B', 'Category C']
values = [5, 7, 9]plt.bar(categories, values, color=['blue', 'orange', 'green'], edgecolor='black', linewidth=2)plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Customized Bar Chart')
plt.show()

image-20240204235338404

总结

在本文中,我们深入探讨了使用Matplotlib库绘制各种炫酷柱状图的技术。从基本的簇状柱状图、堆积柱状图、横向柱状图、百分比柱状图,到更高级的3D柱状图、水平堆积柱状图、多面板柱状图等,提供了多个实用的代码示例。

通过这些示例,读者可以学到如何使用Matplotlib库的不同函数和参数来绘制不同类型的柱状图。我们还介绍了一些自定义技巧,包括添加误差线、调整颜色和样式,以及绘制多面板柱状图等。

总体而言,Matplotlib是一个功能强大的数据可视化工具,通过掌握其中的技术,用户可以根据实际需求创造出更具表现力和可读性的图表。希望本文的代码示例能够帮助读者更好地理解和应用Matplotlib库,提高数据可视化的效果。如果读者有其他问题,建议查阅Matplotlib官方文档或向相关社区寻求帮助。

http://www.lryc.cn/news/294562.html

相关文章:

  • window 挂载linux 网盘
  • windows10忘记密码的解决方案
  • 进程和线程的区别详解
  • (基于xml配置Aop)学习Spring的第十五天
  • Centos7环境安装PHP8
  • No matching client found for package name ‘com.unity3d.player‘
  • JavaWeb之HTML-CSS --黑马笔记
  • logback日志配置
  • SpringBoot集成Flowable工作流
  • try-with-resources 语法详解
  • 【Java程序设计】【C00207】基于(JavaWeb+SSM)的宠物领养管理系统(论文+PPT)
  • 2024-2-4-复习作业
  • 【Linux】解决:为什么重复创建同一个【进程pid会变化,而ppid父进程id不变?】
  • 【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的API网关设计实现
  • Python算法题集_环形链表
  • 【51单片机】开发板&开发软件(Keil5&STC-ISP)简介&下载安装破译传送门(1)
  • #vu3# element plus表格的序号字段
  • 华为配置OSPF与BFD联动示例
  • Git 常用命令详解及如何在IDEA中操作
  • linux+rv1126/imx6ull:opencv静态库交叉编译(手把手百分百成功)
  • Python使用回调函数或async/await关键字、协程实现异步编程
  • 异地办公必不可缺的远程控制软件,原理到底是什么?
  • docker更换镜像源
  • SaaS 电商设计 (八) 直接就能用的一套商品池完整的设计方案(建议收藏)
  • 【Spring连载】使用Spring Data访问Redis(八)----发布/订阅消息
  • list基本使用
  • 网络原理TCP/IP(5)
  • 前端JavaScript篇之JavaScript为什么要进行变量提升,它导致了什么问题?什么是尾调用,使用尾调用有什么好处?
  • React和Vue实现路由懒加载
  • ReactNative实现的横向滑动条