当前位置: 首页 > news >正文

vivado DDS学习

     实现DDS通常有两种方式,一种是读取ROM存放的正弦/余弦信号的查表法,另一种是用DDS IP核。这篇学习笔记中,我们要讲解说明的是VIVADO DDS IP核的应用。 目前本篇默认Phase Generator and SIN/COS LUT(DDS)的standard模式,至于其他模式,目前没有研究使用过,没有话语权,以后研究明白再来续写。

一、DDS IP配置

        下面的配置说明都是本人参考技术手册加上自己的理解,可能会有误解的地方,追求原汁原味的知识点的话还是去看技术手册。

Configuration Tab

Configuration Options:

        1.Phase Generator and SIN/COS LUT

        2.Phase Generator only

        3.SIN/COS LUT only

               从配置选项的名字就能够清晰的看出每种选项代表的功能,但是有必要注意的是 Phase Generator and SIN/COS LUT才是DDS。

                Phase Generator:如上图所示,Phase Generator由一个accumulator和一个可选的adder组成,以提供相位偏移的附加。在制定IP核时,相位增量(PINC)和相位偏移(POFF)可以被配置为fixed、programmable(用config 通道)或者streaming(用phase通道)三种模式。          

                SIN/COS LUT:当仅配置为SIN/COS LUT,不生成Phase Generator时PHASE_IN信号通过phase通道输入,并使用look-up table(LUT)转化为sine和cosine信号。IP核可以配置为仅sine输出,仅cosine输出或两者(正交)都输出,每个输出都可以独立配置为反向输出。可使用可选的Taylor series correction(泰勒级数校正)增加精度。

                Phase Generator and SIN/COS LUT:Phase Generator与SIN/COS LUT一起使用可以组合成为phase truncated DDS(相位截位DDS)或Taylor series correction DDS(泰勒级数校正DDS),也可以在两个块之间添加一个可选的dither generator组合成phase dithered DDS(相位抖动DDS)。

System Clock:DDS核心的时钟频率。其实就是输出信号的采样率

Number of Channels:最多支持16个通道,这些通道时间被复用,这降低了每个信道的有效时钟频率。开启多个通道相当于降低采样率

Mode of Operation:有standard和rasterized两种模式选择。(目前默认讲解standard

Frequency per Channel (Fs):由于分时复用,每个信道的有效时钟是System clock除以Number of Channels

Parameter Selection:DDS关键参数可以使用System parameters来指定,这些参数针对系统架构师(频域参数),也可以使用Hardware parameters,主要针对硬件工程师(时域参数)。这个条件下
Phase Generator和SIN/COS LUT仅根据Hardware parameters指定。

        System parameters:如上图System parameters界面,

                1.Spurious Free Dynamic Range(SFDR):DDS产生信号的质量,用于设置输出宽度以及内部总线宽度和各种实现决策。

                2.Frequency Resolution设置最小频率分辨率,并用于确定相phase accumulator及其相关的相位增量(PINC)和相位偏移(POFF)值所使用的相位宽度(Phase Width)。值越小,分辨率越高,需要更大的累加器。通过选择Noise Shaping可以使Phase Width增加,频率分辨率比指定的更高,

                3.Noise Shaping控制是否使用相位截位(phase truncation)、抖动(dithering)或Taylor series correction(泰勒级数校正)。None:Phase truncation DDS。Dithering:相位抖动用于改善SFDR,但代价是增加本底噪声。Taylor Series Corrected:相位截位中丢弃的bit对Sine/cosine进行插值。Auto:根据SFDR等System parameters自动确定Noise Shaping。

        Hardware parameters:如上图Hardware parameters界面。

                1.Phase Width:设置m_axis_phase_tdata中PHASE_OUT字段的宽度。

                2.Output Width:只有在选择DDS或SIN/COS LUT部件时才启用,因为Phase

                 Generator不需要它,用来设置在m_axis_data_tdata中设置SINE和COSINE字段的宽

                度。它提供的SFDR取决于Noise Shaping 的选项,计算方式如图:

Implementation Tab

Phase Increment Programmability:选择设置PINC值的方法。
Phase Offset Programmability:选择设置POFF值的方法。
对于这些选项在上面介绍 Phase Generator时提到过,现在再来细说一下。
        Programmable:使用CONFIG通道更改PINC和POFF,对于 configuration inputs(s_axis_config_t*),输入和输出的延时是不固定的。建议当DDS的频率和相位在不同的操作模式之间切换时使用。
顺势,我们讲讲 CONFIG Channel。
        要对CONFIG通道进行编程,必须进行N次传输,其中N是通道的数量。 按顺序从通道0开始的每个通道在每次传输时都包含 PINC或(和)POFF值。在最后一次传输时,对于通道(N-1)必须断言TLAST,如果不这样做,将导致event_s_config_tlast_missing或event_s_config_tlast_unexpected输出断言一个时钟周期。数据包只有在完成时才被视为收到。只有在完全接收到它时,它才有资格用于挂起同步事件( 同步事件在这里不说了,没有仔细研究过)。如图3-18所示,在第一个编程周期中,不正确地应用了TLAST,因此触发了事件输出。
第二个编程周期显示了TLAST的正确应用。
当核心配置为单通道操作时,不需要TLAST,并且引脚不存在于CONFIG通道上。
        再讲CONFIG Channel TDATA Structure。
        当CONFIG通道为每个通道提供PINC和POFF值时,每个字段被符号扩展,以适应字节边界,也就是以8bit为单位。例如,对于11位的phase width,PINC将占用10:0位,而POFF将占用26:16位。因此s_axis_config_tdata的总体值为31:0。以下配置的示例宽度结构如图3-19所示:
Streaming:使用PHASE通道更改PINC和POFF,对于 streaming inputs( s_axis_phase_t* ),输入和相关的输出有最小的延迟。建议当DDS的频率和相位需要经常改变时使用。
顺势,我们讲讲 Input PHASE Channel。
输入Phase通道用于DDS编译器执行一个动态功能,如相位或频率调制,每个输入样本都会有一个输出样本的应用程序。事实上,在输入和输出之间存在一对一的关系意味着输出Phase通道上的 TREADY无效会导致输入Phase通道上的TREADY也无效( 两者延时根据内部buffer的容量决定)。同样,Phase通道上输入数据的TVALID无效会导致输出通道上的TVALID无效。
        再讲Input PHASE Channel TDATA Structure。
        当Phase_Width = 11时,s_axis_phase_tdata的结构如图3-20所示:

Resync:选中后,s_axis_phase通道有一个RESYNC字段。当断言这个位元时,重置通道上积累的相位。在这个周期的累积相位的值是伴随RESYNC断言的PINC值加上POFF值。如图所示。
Output_Selection:DDS可以在m_axis_data_tdata总线中有一个SINE和COSINE字段,或者只有这两个字段中的一个。图3-22显示了三种配置的TDATA内部结构;quadratureoutputs, cosine only and sine only。例如,图中显示了一个11位的输出,符号扩展到16位,<<<表示符号扩展。

Detailed Implementation Tab

ARESETn:当选中时,IP核有一个 aresetn (active-Low同步复位)端口。aresetn必须拉低 至少两个周期来复位IP核。
至此,重要的配置就讲到这,后面如有技术深耕,再回来补充。接下来讲述一个实际使用的例子。

举例:

DDS IP核配置如下:
按照以上配置,就产生了一个系统时钟(采样率)是100M,单通道,相位输出位宽32bit,sine(16bit)和cosine(16bit)同时输出,用phase通道对PINC和POFF进行配置,带有aresetn的DDS。
dds_compiler_0 your_instance_name (.aclk(aclk),                                // input wire aclk.aresetn(aresetn),                          // input wire aresetn.s_axis_phase_tvalid(s_axis_phase_tvalid),  // input wire s_axis_phase_tvalid.s_axis_phase_tdata(s_axis_phase_tdata),    // input wire [63 : 0] s_axis_phase_tdata.m_axis_data_tvalid(m_axis_data_tvalid),    // output wire m_axis_data_tvalid.m_axis_data_tdata(m_axis_data_tdata),      // output wire [31 : 0] m_axis_data_tdata.m_axis_phase_tvalid(m_axis_phase_tvalid),  // output wire m_axis_phase_tvalid.m_axis_phase_tdata(m_axis_phase_tdata)    // output wire [31 : 0] m_axis_phase_tdata
);
计算输出频率的公式如图。
根据这个公式,按照我们举例生成的DDS要是想生成一个1M的信号,则需要输入PINC=1*2^32/100='h28F_5C29,POFF根据需求来设置。

拓展延申

如果在此基础上,要求改变系统的采样率为2400M,要求输出一个600M的信号要怎么做呢?系统时钟不可能直接提供一个2400的时钟,DDS IP核最高接受1000M的时钟,但是FPGA也没法使用这么快的时钟。怎么办呢? 采用多个此DDS同时输出信号来提高采样率
第一个问题,提高采样率。
一个DDS的采样率是100M,要并行24路才能达到2400M的采样率。
第二个问题,输出600M信号。
按照上面的计算公式,DDS要输出600M,PINC=600*2^32/100='h6_0000_0000。
第三个问题,24路如何输出一个连续信号?
其实就是把每个阶段的相位增量(PINC)平均分给24个DDS,DDS从第1个开始依次输出的信号相位为PINC+POFF,PINC+POFF+POFF,PINC+POFF+POFF+POFF……一直到第24个DDS。如下图,24个DDS输出24个点。
附上代码:
genvar i;
generatefor(i=0; i<channal; i=i+1)begin:channal_i       always @(posedge clk or posedge rst)beginif(rst)beginPINC[i] <= 'h0;    POFF[i] <= 'h0;    s_axis_phase_tvalid[i] <= 1'b0;end    else beginPINC[i] <= PINC_adjust;POFF[i] <= (PINC_adjust/channal)*i;      s_axis_phase_tvalid[i] <= 1'b1;         endend dds_compiler_0 dds_compiler_0 (.aclk(clk),                                .aresetn(aresetn),                          .s_axis_phase_tvalid(s_axis_phase_tvalid[i]),  .s_axis_phase_tdata({POFF[i],PINC[i]}),    .m_axis_data_tvalid(m_axis_data_tvalid[i]),.m_axis_data_tdata({sine[i],cosine[i]}), .m_axis_phase_tvalid(m_axis_phase_tvalid[i]), .m_axis_phase_tdata(m_axis_phase_tdata[i]) );end
endgenerate

http://www.lryc.cn/news/288676.html

相关文章:

  • 微信小程序(十六)slot插槽
  • gtest 单元测试
  • 掌握assert的使用:断言在错误检查和调试中不可或缺
  • 概念杂记--到底啥是啥?(数据库篇)
  • Ubuntu20.4 Mono C# gtk 编程习练笔记(四)
  • 1 月 26日算法练习
  • 今日AI大热潮,明日智能风向标
  • 03 SB实战 -微头条之首页门户模块(跳转某页面自动展示所有信息+根据hid查询文章全文并用乐观锁修改阅读量)
  • Abaqus许可分析工具
  • 【开发工具】从eclipse到idea的过度
  • 【QT+QGIS跨平台编译】之十一:【libzip+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
  • openlayers+vue实现缓冲区
  • (大众金融)SQL server面试题(3)-客户已用额度总和
  • c语言笔记
  • 6轴机器人运动正解-逆解控制【1】——三种控制位姿的方式
  • c# Microsoft UI Automation
  • C#-前后端分离连接mysql数据库封装接口
  • yolov8 opencv dnn部署自己的模型
  • 插槽(64-67)
  • C# LING查询语法学习,扩展方法的使用
  • 自然语言推断:微调BERT
  • 立创EDA学习:设计收尾工作
  • ShardingSphere之ShardingJDBC客户端分库分表上
  • rust for循环步长-1,反向逆序遍历
  • 编译与运行环境(C语言)
  • 再谈Android View绘制流程
  • 分布式定时任务系列8:XXL-job源码分析之远程调用
  • python+Qt5 UOS 摄相头+麦克风测试,摄相头自动解析照片二维条码,麦克风解析音频文件
  • MongoDB日期存储与查询、@Query、嵌套字段查询实战总结
  • Windows版本Node.js常见问题及操作解决方式(小白入门必备)