当前位置: 首页 > news >正文

代码随想录算法训练营day48 | 动态规划 121 买卖股票的最佳时机 122 买卖股票的最佳时机II

day48

      • 121. 买卖股票的最佳时机
        • 1.确定dp数组(dp table)以及下标的含义
        • 2.确定递推公式
        • 3.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组
      • 122.买卖股票的最佳时机II

121. 买卖股票的最佳时机

题目链接
解题思路:
动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

2.确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

3.dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

4.确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

5.举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:
在这里插入图片描述dp[5][1]就是最终结果。

为什么不是dp[5][0]呢?

因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!

以上分析完毕,C++代码如下:

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(2));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[len - 1][1];}
};

122.买卖股票的最佳时机II

题目链接
解题思路:
本题和121. 买卖股票的最佳时机 的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)

代码如下:

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[len - 1][1];}
};

大家可以本题和121. 买卖股票的最佳时机的代码几乎一样,唯一的区别在:

dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

这正是因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]

http://www.lryc.cn/news/27898.html

相关文章:

  • MediaTek 天玑 8000 5G移动平台详细参数
  • Kafka
  • 数据结构——第三章 栈与队列(2)
  • 【Linux学习】基础IO——理解缓冲区 | 理解文件系统
  • RHCSA-重置root密码(3.3)
  • 无公网IP快解析实现U+随时随地访问
  • UVa 307 Sticks 木棍拼接 ID 迭代加深搜
  • 阿里云(CentOS)中MySQL8忘记密码的解决方法
  • 三、Spring的入门程序
  • 摘录一下Python列表和元组的学习笔记
  • 【量化金融】收益率、对数收益率、年华收益、波动率、夏普比率、索提诺比率、阿尔法和贝塔、最大回撤
  • 1_机器学习概述—全流程
  • VUE中给对象添加新属性时,界面不刷新怎么办
  • 视频号频出10w+,近期爆红的账号有哪些?
  • 企业寄件现代化管理教程
  • django 在网页显示后台进度
  • 机器学习库(Numpy, Scikit-learn)
  • Linux操作系统学习(进程替换)
  • 【C++从入门到放弃】类和对象(中)———类的六大默认成员函数
  • 白盒测试重点复习内容
  • 【13】linux命令每日分享——groupadd建立组
  • 《第一行代码》 第十章:服务
  • 简单介绍编程进制
  • windows忘记开机密码怎么办
  • SpringCloud:Eureka
  • 如何获取或设置CANoe以太网网卡信息(SET篇)
  • 【软件测试面试题】项目经验?资深测试 (分析+回答) 我不信你还拿不到offer......
  • tensorflow lite简介-移动设备端机器学习
  • Node.js常用知识
  • 踩坑:maven打包失败的解决方式总结