当前位置: 首页 > news >正文

Hive实战:词频统计

文章目录

  • 一、实战概述
  • 二、提出任务
  • 三、完成任务
    • (一)准备数据文件
      • 1、在虚拟机上创建文本文件
      • 2、将文本文件上传到HDFS指定目录
    • (二)实现步骤
      • 1、启动Hive Metastore服务
      • 2、启动Hive客户端
      • 3、基于HDFS文件创建外部表
      • 4、查询单词表,所有单词成一列
      • 5、基于查询结果创建视图
      • 6、基于视图进行分组统计
      • 7、基于嵌套查询一步搞定

一、实战概述

  • 在本次实战中,我们任务是在大数据环境下使用Hive进行词频统计。首先,我们在master虚拟机上创建了一个名为test.txt的文本文件,内容包含一些关键词的句子。接着,我们将该文本文件上传到HDFS的/hivewc/input目录,作为数据源。

  • 随后,我们启动了Hive Metastore服务和Hive客户端,为数据处理做准备。在Hive客户端中,我们创建了一个名为t_word的外部表,该表的结构包含一个字符串类型的word字段,并将其位置设置为HDFS中的/hivewc/input目录。这样,Hive就可以直接读取和处理HDFS中的文本数据。

  • 为了进行词频统计,我们编写了一条Hive SQL语句。该语句首先使用explodesplit函数将每个句子拆分为单个单词,然后通过子查询对这些单词进行计数,并按单词进行分组,最终得到每个单词的出现次数。

  • 通过执行这条SQL语句,我们成功地完成了词频统计任务,得到了预期的结果。这个过程展示了Hive在大数据处理中的强大能力,尤其是对于文本数据的分析和处理。同时,我们也注意到了在使用Hive时的一些细节,如子查询需要取别名等,这些经验将对今后的数据处理工作有所帮助。

二、提出任务

  • 文本文件test.txt
hello hadoop hello hive
hello hbase hello spark
we will learn hadoop
we will learn hive
we love hadoop spark
  • 进行词频统计,结果如下
hadoop  3
hbase   1
hello   4
hive    2
learn   2 
love    1
spark   2
we      3
will    2

三、完成任务

(一)准备数据文件

1、在虚拟机上创建文本文件

  • 在master虚拟机上创建test.txt文件
    在这里插入图片描述

2、将文本文件上传到HDFS指定目录

  • 在HDFS上创建/hivewc/input目录
    在这里插入图片描述
  • test.txt文件上传到HDFS的/hivewc/input目录
    在这里插入图片描述

(二)实现步骤

  • 注意:必须要先启动Hadoop服务

1、启动Hive Metastore服务

  • 我们需要启动Hive Metastore服务,这是Hive的元数据存储服务。
  • 执行命令:hive --service metastore &
    在这里插入图片描述

2、启动Hive客户端

  • 执行命令:hive
    在这里插入图片描述
  • 一旦我们看到命令提示符hive>,就表示我们已经成功进入Hive客户端。

3、基于HDFS文件创建外部表

  • 基于/hivewc/input下的文件创建外部表t_word,执行命令:CREATE EXTERNAL TABLE t_word(line string) LOCATION '/hivewc/input';
    在这里插入图片描述

  • 在MySQL的hive数据库的TBLS表里,我们可以查看外部表t_word对应的记录。
    在这里插入图片描述

4、查询单词表,所有单词成一列

  • 查看单词表记录,执行语句:SELECT line FROM t_word;
    在这里插入图片描述

  • 按空格拆分行数据,执行语句:SELECT split(line, ' ') FROM t_word;
    在这里插入图片描述

  • 让单词成一列,执行语句:SELECT explode(split(line, ' ')) AS word FROM t_word;
    在这里插入图片描述

5、基于查询结果创建视图

  • 基于查询结果创建了一个视图v_word,执行语句:CREATE VIEW v_word AS SELECT explode(split(line, ' ')) AS word FROM t_word;
    在这里插入图片描述

  • 查询视图的全部记录,执行语句:SELECT word FROM v_word;
    在这里插入图片描述

6、基于视图进行分组统计

  • 基于视图分组统计操作,执行语句:SELECT word, COUNT(*) FROM v_word GROUP BY word;
    在这里插入图片描述

7、基于嵌套查询一步搞定

  • 为了更简便地实现相同的效果,使用嵌套查询:SELECT word, COUNT(*) FROM (SELECT explode(split(line, ' ')) AS word FROM t_word) AS v_word GROUP BY word;
    在这里插入图片描述

  • 注意,这里在嵌套查询中,我们为子查询取了一个别名,这个别名是v_word

  • 这条SQL语句是在处理一个名为t_word的表,该表中有一个word字段,该字段存储的是由空格分隔的单词字符串。

  1. 首先,使用explode(split(line, ' ')) AS wordt_word表中的每一行word字段创建一个新的临时表(别名v_word)。这里split(word, ' ')函数将每个word字段的内容按照空格分割成多个单词,并生成一个多行的结果集,每行包含一个单词。

  2. explode函数则将这个分割后的数组转换为多行记录,即每一行对应原字符串中的一个单词。

  3. 然后,通过GROUP BY word对新生成的临时表v_word中的word字段进行分组,即将所有相同的单词归为一组。

  4. 最后,使用COUNT(*)统计每个单词分组的数量,结果将展示每个单词及其在原始数据集中出现的次数。

  • 整个查询的目的在于统计t_word表中各个单词出现的频率。

  • 通过这一系列的操作,我们深入学习了Hive的外部表创建、数据加载、查询、视图创建以及统计分析的操作。希望大家能够在实际应用中灵活运用这些知识。

http://www.lryc.cn/news/269745.html

相关文章:

  • FairyGUI-Cocos Creator官方Demo源码解读
  • LabVIEW利用视觉引导机开发器人精准抓取
  • 【Linux】指令(本人使用比较少的)——笔记(持续更新)
  • 032 - STM32学习笔记 - TIM基本定时器(一) - 定时器基本知识
  • 轮廓检测与处理
  • 跟着LearnOpenGL学习11--材质
  • Java guava partition方法拆分集合自定义集合拆分方法
  • GLTF编辑器-位移贴图实现破碎的路面
  • 多维时序 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多变量时间序列预测
  • docker安装Nacos和Rabbitmq
  • Android MVC 写法
  • 网络层解读
  • js for和forEach 跳出循环 替代方案
  • 如何使用ArcGIS Pro自动矢量化建筑
  • 交互式笔记Jupyter Notebook本地部署并实现公网远程访问内网服务器
  • 41.坑王驾到第七期:uniapp开发微信小程序引用组件时报错!
  • 挂载与解挂载
  • UGUI Panel的显示和隐藏优化
  • Linux:多文件编辑
  • 模式识别与机器学习-概率图模型
  • RK3566 ANDROID 11 平台上适配移远EC200A
  • 存算分离降本增效,StarRocks 助力聚水潭 SaaS 业务服务化升级
  • Linux 内核学习笔记: hlist 的理解
  • 几种设计模式介绍
  • 拓展操作(三) jenkins迁移到另一个机器
  • 重定向和转发的区别
  • 基于ElementUI二次封装弹窗组件
  • linux cat命令改变功能显示当前文件行号
  • Django-REST-Framework 如何快速生成Swagger, ReDoc格式的 REST API 文档
  • SpringBoot当中的Singleton和Prototype详解