当前位置: 首页 > news >正文

【经典LeetCode算法题目专栏分类】【第9期】深度优先搜索DFS与并查集:括号生成、岛屿问题、扫雷游戏

 《博主简介》

小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

DFS

括号生成

DFS

class Solution:

    def generateParenthesis(self, n: int) -> List[str]:

        def DFS(left, right, s):

            if left == n and right == n:

                res.append(s)

                return

            if left < n:

                DFS(left+1,right,s+'(')

            if right < left:

                DFS(left,right + 1,s+')')

        res = []

        DFS(0,0,'')

        return res

BFS

class Node:

    def __init__(self, left, right, s):

        self.left = left

        self.right = right

        self.s = s

class Solution:

    def generateParenthesis(self, n: int) -> List[str]:

        # BFS写法

        res = []

        if n == 0:

            return res

        queue = [Node(n,n,'')]

        while queue:

            node = queue.pop(0)

            if node.left == 0 and node.right == 0:

                res.append(node.s)

            if node.left > 0:

                queue.append(Node(node.left-1, node.right, node.s+'('))

            if node.right > 0 and node.right > node.left:

                queue.append(Node(node.left, node.right-1, node.s+')'))

        return res

# 写法2:

class Solution:

    def generateParenthesis(self, n: int) -> List[str]:

        # BFS写法

        res = []

        if n == 0:

            return res

        queue = [(n,n,'')]

        while queue:

            node = queue.pop(0)

            if node[0] == 0 and node[1] == 0:

                res.append(node[2])

            if node[0] > 0:

                queue.append((node[0]-1, node[1], node[2]+'('))

            if node[1] > 0 and node[1] > node[0]:

                queue.append((node[0], node[1]-1, node[2]+')'))

        return res

通常搜索几乎都是用深度优先遍历(回溯算法)。

广度优先遍历,得自己编写结点类,显示使用队列这个数据结构。深度优先遍历的时候,就可以直接使用系统栈,在递归方法执行完成的时候,系统栈顶就把我们所需要的状态信息直接弹出,而无须编写结点类和显示使用栈。

将BFS写法中的pop(0)改为pop()即为深度优先的迭代形式。

对比迭代的BFS写法与递归的DFS写法,可以看到,BFS其实是将DFS的参数当做队列中的一个元素来进行处理罢了,其他的与DFS没有什么区别。

并查集

岛屿问题

class Solution:

    def numIslands(self, grid: List[List[str]]) -> int:

        self.m = len(grid)

        self.n = len(grid[0])

        res = 0

        for i in range(self.m):

            for j in range(self.n):

                if grid[i][j] == '1':

                    self.sink(i,j,grid)

                    res += 1

        return res

    

    def sink(self, i, j, grid):

        grid[i][j] = '0'

        for ni,nj in [(i-1,j),(i+1,j),(i,j-1),(i,j+1)]:

            if 0<=ni<self.m and 0<=nj<self.n and grid[ni][nj] == '1':

                self.sink(ni,nj,grid)

扫雷游戏

# DFS

class Solution:

    def updateBoard(self, board: List[List[str]], click: List[int]) -> List[List[str]]:

        # DFS

        i, j = click

        row, col = len(board), len(board[0])

        if board[i][j] == "M":

            board[i][j] = "X"

            return board

        # 计算空白快周围的雷数量

        def cal(i, j):

            res = 0

            for x in [1, -1, 0]:

                for y in [1, -1, 0]:

                    if x == 0 and y == 0: continue

                    if 0 <= i + x < row and 0 <= j + y < col and board[i + x][j + y] == "M": res += 1

            return res

        def dfs(i, j):

            num = cal(i, j)

            if num > 0:

                board[i][j] = str(num)

                return

            board[i][j] = "B"

            for x in [1, -1, 0]:

                for y in [1, -1, 0]:

                    if x == 0 and y == 0: continue

                    nxt_i, nxt_j = i + x, j + y

                    if 0 <= nxt_i < row and 0 <= nxt_j < col and board[nxt_i][nxt_j] == "E": dfs(nxt_i, nxt_j)

        dfs(i, j)

        return board

# BFS

class Solution:

    def updateBoard(self, board: List[List[str]], click: List[int]) -> List[List[str]]:

        i, j = click

        row, col = len(board), len(board[0])

        if board[i][j] == "M":

            board[i][j] = "X"

            return board

        # 计算空白块周围的雷数目

        def cal(i, j):

            res = 0

            for x in [1, -1, 0]:

                for y in [1, -1, 0]:

                    if x == 0 and y == 0: continue

                    if 0 <= i + x < row and 0 <= j + y < col and board[i + x][j + y] == "M": res += 1

            return res

        def bfs(i, j):

            queue = [(i,j)]

            while queue:

                i, j = queue.pop(0)

                num = cal(i, j)

                if num > 0:

                    board[i][j] = str(num)

                    continue

                board[i][j] = "B"

                for x in [1, -1, 0]:

                    for y in [1, -1, 0]:

                        if x == 0 and y == 0: continue

                        nxt_i, nxt_j = i + x, j + y

                        if nxt_i < 0 or nxt_i >= row or nxt_j < 0 or nxt_j >= col: continue

                        if board[nxt_i][nxt_j] == "E":

                            queue.append((nxt_i, nxt_j))

                            board[nxt_i][nxt_j] = "B"  # 主要是用于标识该点已经被访问过,防止后续重复的添加相同的‘E’点

        bfs(i, j)

        return board

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

欢迎关注下方GZH:阿旭算法与机器学习,共同学习交流~

http://www.lryc.cn/news/266190.html

相关文章:

  • 字符设备驱动开发-注册-设备文件创建
  • TrustZone之可信操作系统
  • java定义三套场景接口方案
  • idea连接数据库,idea连接MySQL,数据库驱动下载与安装
  • Redis-实践知识
  • 多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测
  • leetcode160相交链表思路解析
  • 在线分析工具-日志优化
  • 硬核实战!mysql 错误操作整个表全部数据后如何恢复?附解决过程、思路(百万行SQL,通过binlog日志恢复)
  • 【什么是反射机制?为什么反射慢?】
  • PostGreSQL:货币类型
  • ESP8266网络相框采用TFT_eSPI库TJpg_Decoder库mixly库UDP库实现图片传送
  • Go 泛型发展史与基本介绍
  • python 解决手机拍的书籍图片发灰的问题
  • 【prompt一】Domain Adaptation via Prompt Learning
  • 视频编辑与制作,添加视频封面的软件
  • Deepin更换仿Mac主题
  • 【Flink-Kafka-To-ClickHouse】使用 Flink 实现 Kafka 数据写入 ClickHouse
  • 浅谈Redis分布式锁(下)
  • Django Rest Framework框架的安装
  • 深度学习(七):bert理解之输入形式
  • 如何用Excel制作一张能在网上浏览的动态数据报表
  • 双向数据绑定是什么
  • 鱼眼标定方式
  • 详解Keras3.0 KerasNLP Models: GPT2 GPT2Tokenizer
  • 2016年第五届数学建模国际赛小美赛B题直达地铁线路解题全过程文档及程序
  • 三秦通ETC续航改造
  • 使用Python实现发送Email电子邮件【第19篇—python发邮件】
  • Docker基本命令和Docker怎么自己制作镜像
  • Netty-2-数据编解码