当前位置: 首页 > news >正文

双向数据绑定是什么

一、什么是双向绑定

我们先从单向绑定切入单向绑定非常简单,就是把Model绑定到View,当我们用JavaScript代码更新Model时,View就会自动更新双向绑定就很容易联想到了,在单向绑定的基础上,用户更新了ViewModel的数据也自动被更新了,这种情况就是双向绑定举个栗子

当用户填写表单时,View的状态就被更新了,如果此时可以自动更新Model的状态,那就相当于我们把ModelView做了双向绑定关系图如下

二、双向绑定的原理是什么

我们都知道 Vue 是数据双向绑定的框架,双向绑定由三个重要部分构成

  • 数据层(Model):应用的数据及业务逻辑
  • 视图层(View):应用的展示效果,各类UI组件
  • 业务逻辑层(ViewModel):框架封装的核心,它负责将数据与视图关联起来

而上面的这个分层的架构方案,可以用一个专业术语进行称呼:MVVM这里的控制层的核心功能便是 “数据双向绑定” 。自然,我们只需弄懂它是什么,便可以进一步了解数据绑定的原理

理解ViewModel

它的主要职责就是:

  • 数据变化后更新视图
  • 视图变化后更新数据

当然,它还有两个主要部分组成

  • 监听器(Observer):对所有数据的属性进行监听
  • 解析器(Compiler):对每个元素节点的指令进行扫描跟解析,根据指令模板替换数据,以及绑定相应的更新函数

三、实现双向绑定

我们还是以Vue为例,先来看看Vue中的双向绑定流程是什么的

  1. new Vue()首先执行初始化,对data执行响应化处理,这个过程发生Observe
  2. 同时对模板执行编译,找到其中动态绑定的数据,从data中获取并初始化视图,这个过程发生在Compile
  3. 同时定义⼀个更新函数和Watcher,将来对应数据变化时Watcher会调用更新函数
  4. 由于data的某个key在⼀个视图中可能出现多次,所以每个key都需要⼀个管家Dep来管理多个Watcher
  5. 将来data中数据⼀旦发生变化,会首先找到对应的Dep,通知所有Watcher执行更新函数

流程图如下:

实现

先来一个构造函数:执行初始化,对data执行响应化处理

class Vue {  constructor(options) {  this.$options = options;  this.$data = options.data;  // 对data选项做响应式处理  observe(this.$data);  // 代理data到vm上  proxy(this);  // 执行编译  new Compile(options.el, this);  }  
}  

data选项执行响应化具体操作

function observe(obj) {  if (typeof obj !== "object" || obj == null) {  return;  }  new Observer(obj);  
}  class Observer {  constructor(value) {  this.value = value;  this.walk(value);  }  walk(obj) {  Object.keys(obj).forEach((key) => {  defineReactive(obj, key, obj[key]);  });  }  
}  
编译Compile

对每个元素节点的指令进行扫描跟解析,根据指令模板替换数据,以及绑定相应的更新函数

class Compile {  constructor(el, vm) {  this.$vm = vm;  this.$el = document.querySelector(el);  // 获取dom  if (this.$el) {  this.compile(this.$el);  }  }  compile(el) {  const childNodes = el.childNodes;   Array.from(childNodes).forEach((node) => { // 遍历子元素  if (this.isElement(node)) {   // 判断是否为节点  console.log("编译元素" + node.nodeName);  } else if (this.isInterpolation(node)) {  console.log("编译插值⽂本" + node.textContent);  // 判断是否为插值文本 {{}}  }  if (node.childNodes && node.childNodes.length > 0) {  // 判断是否有子元素  this.compile(node);  // 对子元素进行递归遍历  }  });  }  isElement(node) {  return node.nodeType == 1;  }  isInterpolation(node) {  return node.nodeType == 3 && /\{\{(.*)\}\}/.test(node.textContent);  }  
}  
依赖收集

视图中会用到data中某key,这称为依赖。同⼀个key可能出现多次,每次都需要收集出来用⼀个Watcher来维护它们,此过程称为依赖收集多个Watcher需要⼀个Dep来管理,需要更新时由Dep统⼀通知

实现思路

  1. defineReactive时为每⼀个key创建⼀个Dep实例
  2. 初始化视图时读取某个key,例如name1,创建⼀个watcher1
  3. 由于触发name1getter方法,便将watcher1添加到name1对应的Dep中
  4. name1更新,setter触发时,便可通过对应Dep通知其管理所有Watcher更新
// 负责更新视图  
class Watcher {  constructor(vm, key, updater) {  this.vm = vm  this.key = key  this.updaterFn = updater  // 创建实例时,把当前实例指定到Dep.target静态属性上  Dep.target = this  // 读一下key,触发get  vm[key]  // 置空  Dep.target = null  }  // 未来执行dom更新函数,由dep调用的  update() {  this.updaterFn.call(this.vm, this.vm[this.key])  }  
}  

声明Dep

class Dep {  constructor() {  this.deps = [];  // 依赖管理  }  addDep(dep) {  this.deps.push(dep);  }  notify() {   this.deps.forEach((dep) => dep.update());  }  
}  

创建watcher时触发getter

class Watcher {  constructor(vm, key, updateFn) {  Dep.target = this;  this.vm[this.key];  Dep.target = null;  }  
}  

依赖收集,创建Dep实例

function defineReactive(obj, key, val) {  this.observe(val);  const dep = new Dep();  Object.defineProperty(obj, key, {  get() {  Dep.target && dep.addDep(Dep.target);// Dep.target也就是Watcher实例  return val;  },  set(newVal) {  if (newVal === val) return;  dep.notify(); // 通知dep执行更新方法  },  });  
}  

参考文献

  • https://www.liaoxuefeng.com/wiki/1022910821149312/1109527162256416
  • https://juejin.cn/post/6844903942254510087#heading-9
http://www.lryc.cn/news/266167.html

相关文章:

  • 鱼眼标定方式
  • 详解Keras3.0 KerasNLP Models: GPT2 GPT2Tokenizer
  • 2016年第五届数学建模国际赛小美赛B题直达地铁线路解题全过程文档及程序
  • 三秦通ETC续航改造
  • 使用Python实现发送Email电子邮件【第19篇—python发邮件】
  • Docker基本命令和Docker怎么自己制作镜像
  • Netty-2-数据编解码
  • 伽马校正:FPGA
  • 【SpringCloud笔记】(8)服务网关之GateWay
  • Compose常用布局
  • 使用keytool查看Android APK签名
  • 数据库学习日常案例20231221-oracle libray cache lock分析
  • 【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )
  • 算法模板之队列图文详解
  • [node]Node.js 中REPL简单介绍
  • AtomHub 开源容器镜像中心开放公测,国内服务稳定下载
  • java8实战 lambda表达式、函数式接口、方法引用双冒号(中)
  • FPGA高端项目:UltraScale GTH + SDI 视频编解码,SDI无缓存回环输出,提供2套工程源码和技术支持
  • 为什么react call api in cDidMount
  • openGauss学习笔记-171 openGauss 数据库运维-备份与恢复-导入数据-深层复制
  • [kubernetes]控制平面ETCD
  • 序列化类的高级用法
  • 4.svn版本管理工具使用
  • ZKP Algorithms for Efficient Cryptographic Operations 1 (MSM Pippenger)
  • Windows系统安装 ffmpeg
  • 油猴脚本教程案例【键盘监听】-编写 ChatGPT 快捷键优化
  • 数据结构 | 查漏补缺
  • 回溯算法练习题
  • 代码随想录算法训练营 | day60 单调栈 84.柱状图中最大的矩形
  • vscode中vue项目报错